Millimeter Wave Communications: From Point-to-Point Links to Agile Network Connections

Haitham Hassanieh
Omid Abari, Michael Rodriguez, Dina Katabi

Spectrum Scarcity

Huge bandwidth available at millimeter wave frequencies

Millimeter Wave Wireless Applications

- Cellular Networks: 5G Picocells, Wireless backhaul
- Wireless LANs: IEEE 802.11ad, IEEE 802.15.3c, ECMA-387, Wireless-HD

Virtual Reality

Wireless Data Centers

Connected Vehicles

Millimeter Waves Suffer from Large Attenuation

mmWave radios use phased antenna arrays to focus the power along one direction

Small Wavelength enables thousands of antennas to be packed into small space

→ Extremely narrow beams

Communication is possible only when AP and Client beams are aligned!!

In 802.11ad, mobile users can take 100ms--few sec to align the beams and establish communication.

[MOBICOM'14, SIGMETRICS'15, NSDI'16]

Agile-Link: A millimeter wave system that can quickly align the beams to establish and maintain communication.

Outline

Background

Agile Link System

Evaluation

How to align the beams of the AP and Client?

N: number of possible directions

How to align the beams of the AP and Client?

N: number of possible directions

Naïve Algorithm: Exhaustive Scan

N : number of possible directions

 $O(N^2)$ Beacon Packets \rightarrow Too expensive

802.11ad: Multi-Stage Scan

Stage 1: Client uses omni-directional; AP scans directions

802.11ad: Multi-Stage Scan

Stage 2: AP uses omni directional; client scans directions

O(N) Beacon Packets

→ Still Too Slow [Mobicom'14, Sigmetrics'15, NSDI'16]

How can we find the right alignment in sublinear time without scanning all directions?

Outline

Background

Agile Link System

Evaluation

Idea: Leverage Path Sparsity

- In mmWave, signal travels only along few paths from TX to RX
- At most 2-3 paths exist in practice [ICC'14, Proc. of IEEE'14, SIGMETRICS'15, NSDI'16...]

Idea: Leverage Path Sparsity

Construct a Multi-Armed Beam:

Simultaneously collects signals from multiple directions.

1. How can we generate multi-armed beams?

2. What is the best choice of multi-armed beams to quickly find the right direction?

How can we generate multi-armed beams?

Phased Array

To beam along direction θ ,

Antennas

Time Samples

Spatial Directions

Frequencies

How can we generate multi-armed beams?

Phased Array is a Fourier Transform

Create multi-armed beams using Sparse Fourier Transform techniques.

2. What is the best choice of multi-armed beams to quickly find the right direction?

What is the best choice of multi-armed beams?

- Pick multi-armed beams to create random hash functions
- Estimate the true direction using voting

2. What is the best choice of multi-armed beams to quickly find the right direction?

Randomized Hashing & Voting

Complexity

- N: # of spatial directions \propto # of phased array antennas
- Number of beacon packets needed to discover direction of alignment:

Exhaustive Scan	802.11ad	Agile-link
$O(N^2)$	O(N)	O(log <i>N</i>)

Agile-Link finds the correct alignment without scanning the space from only O(log N) packets

Outline

Background

Agile Link System

Evaluation

Implementation

Built Millimeter Wave Radio Front-End with a Steerable Phased Array.

Correct Alignment

Correct Alignment

TX at 120° relative to RX

RX at 50° relative to TX

Direction of Departure of the Signal from TX

Beam Alignment Latency (Simulations)

Beam Alignment Latency (Simulations)

Agile-Link is up to 10x faster than 802.11ad and orders of magnitude faster than exhaustive search.

Related Work

• Point-to-point mmWave communication with horn antennas Wireless Data Centers [NSDI'16, SIGCOMM'12, SIGCOMM'11], Cellular Picocells and WiFi [SIGMETRICS'15, MobiCom'14]

Avoid Searching For the right alignment
 BeamSpy [NSDI'16], MOCA [MobiHoc'16], BBS [INFOCOM'15]

• Simulation based beam searching methods
Hierarchical Scan [PIMRC'15, EUSIPCO'14, J. Com. & Net.'14, Trans. Com.'13,
GlobeCom'11, PIMRC'12], Compressed Sensing [Allerton'12, WCNC'13]

Conclusion

- Establishing communication links in millimeter wave networks is challenging due to directionality.
- Agile-Link: millimeter wave system that can quickly establish a link without having to scan the space.
- Exciting time for millimeter wave networks!
 - Rules of the game has changed.
 - Need new networking protocols: PHY, MAC App.