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The Discrete Fourier Transform

Discrete Fourier Transform:
— Given: asignalx € C"
— Goal: compute the frequency vector X such thatfor f € [1...n]:

)/Zf — th e-12mtf/n

Fundamental tool:

o
— Compression (audio, image, video) 1 20-
— Signal processing | U—wﬁm
— Data analysis = :
os o5 o7 o8 o9

— Wireless Communication

Fastest algorithm since 1960s &

Hz

FFT : O(Tl log n) tlme s Sampled Audio Data (Time)

mmmmm DFT of Audio Samples (Frequency)




Sparse Fourier Transform
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e Often the Fourier transform is dominated by a small number of

IlpeakS”

— Only few of the frequency coefficients are nonzero.

— An exactly k-sparse signal has only k nonzero frequency coefficients.

— In practice : approximate a sparse signal using the k largest peaks.

* Problem : Can we recover the k-sparse frequency spectrum faster than FFT?



Previous Work

e Algorithms:
— [KM92, Mansour92, GGIMS02, AGS03, GMSO05, Iwen10, Akal0]

e Best running time: [GMS05] O(k log* n)
— Intheory : Improves over FFT forn/k >> log3n
— In practice : Large constants; need n/k > 40,000 to beat FFT

e Goal:

— Theory: improve over FFT for all values of k = 0(n)

— Practice: faster runtime than FFT.



Our results

e Randomized algorithms, with large constant probability of success

e Exactly k-sparse case, recover X : 0(k logn)
— Optimal if FFT optimal

* Approximately k-sparse case, recover X' :

— LetErr¥(®) = min _ |IR — &,ll,
k sparse X

— |,/l, guarantee ||§’ — )?” < ¢ X Err¥(): O(k log(n) log(n/k))

* Improves over FFT forany k < n

— I../1, guarantee ||x — x|| < —Err (X): O0(y/nklognlogn)

e Improves over FFT for k « n/logn



Sparse FFT - Algorithm



Time Domain Signal

Cut off Time signal

First B samples

Intuition

Frequency Domain
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Frequency Domain
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Frequency Domain

n-point DFT : nlog(n)

x mp 3

n-point DFT of first B
terms : nlog(n)

X X Boxcar ‘ X * sinc

B-point DFT of first B
terms: B log(B)

Alias (x X Boxcar)

!

Subsample (X * sinc)



Framework

n-point DFT B-point DFT n frequencies hash
of all n samples of first B sample into B buckets

“Hashes” the n frequency coefficients into B buckets in
O(B log B) time

n/B frequencies coefficients hash into each bucket.

|Ideally we want:
— Value of each bucket =sum over n/B frequencies that hash to it.
— If one large frequency in the bucket - Estimate its value from value of the bucket.



Issues

 Leakage

value of bucket = Subsample (X * sinc)
sum over all frequencies weighted by sinc

frequencies outside the bucket leak power into the
bucket.

Replace sinc with a better Filter

GOAL : Subsample (X = Filter) = sum only over n/B
frequencies that hash to the bucket

e Given these B buckets, how can we estimate
the locations and values the k large
frequencies?




Filter: Sinc

Filter (time)
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— Polynomial decay

— Leaking many buckets
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Filter: Boxcar

Filter (time)
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F = Sinc F = Boxcar

— Large support in time domain = Cannot truncate

— Need all n time domain samples



Filter: Gaussian

Filter (freq)

i . Filter (time) _ i ~ id
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F = Gaussian F = Gaussian

— Exponential decay

— Leaking to /logn buckets



Filters: Wider Gaussian

Filter (time)

Filter (freq)
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F = Wider Gaussian

— Exponential decay
— Leaking to 0 buckets

F = Narrow Gaussian

— But trivial contribution to the correct bucket



Filters: Sinc x Gaussian

Filter (time) Filter (freq)
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F = Sinc x Gaussian F = Boxcar * Gaussian

— Still exponential decay

— Leaking to at most 1 bucket

— Sufficient contribution to the correct bucket
— Small support in time domain



Filters: Sinc x Gaussian
Filter (frequency): Gaussian * boxcar

| |

— Gaussian with standard deviation : B,/logn




Filters: Sinc x Gaussian

Pass region
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— Gaussian with standard deviation : B,/logn



Filters: Sinc x Gaussian

— Gaussian with standard deviation : B,/logn
— Filter F has a support of B logn in the time domain
— Alias (x X F) into B samples



Finding the support

e V=B-point DFT (x X F) =Subsample (ﬁ * ﬁ')

 Assume no collisions:
— At most one large frequency hashes into each bucket.
— Large frequency f; hashes to bucket b :

Vb, =Ry, X Fp + leakaBe
— Recall: DFT(X?) = & x e 12me//n

— §* = B-point DFT (X X F) :
S\,Tbl =Ry, X p—l2mMTf1i/n FA n m



e V=B-point DFT (x X F) =Subsample ()2 * ﬁ')

Finding the support

e Assume no collisions:

— At most one large frequency hashes into each bucket.

— Large frequency f; hashes to bucket b :

S\’b1 =5Zf1 X Fp
a1 - < —12Tt n »
y b, —Xfl X e f1/ X FA

b1 e 12T f1/M S angle <Ayb1 ) =—2T fi/n

1 1
bq Y'b,
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f1

. Vo, .
— g-angle <,);1b1> mod n Xr =




Random Hashing

e Some Large frequencies collide:
— Subtract and recurse
— Small number of collisions = converges in few iterations

e Every iteration needs new random hashing:

— Permute time domain signal 2 permute frequency domain

— o is invertible mod n :

—i2ntf/n S/

’ — _/\
Xt—XGtXB Xf_XO'_lf-l'ﬁ



Algorithm

* |terationi:
— B; xk/21
— Permute spectrum : X'y =X, X €
— ¥ = B; -point DFT (X' X F) = Subsample (ﬁ’ * F")
— Repeat with time shift to get y*

—i2mtf/n
— Subtract large frequencies recovered in previous iterations
— Recover locations and values of remaining large frequencies

e Iteration i recovers k/ 2! of the large frequencies with
probability 3/4 in O(B; logn) time

Theorem: Recover % in O(k logn) with probability 3/4




Experiments
(variant exactly k-sparse algorithm)



Experiments

Run Time vs Signal Sparsity (N=222)
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Run Time (sec)
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Run Time vs Signal Size (k=50)
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Conclusions

e Sparse Fourier Transform with running times :
— O(klogn) for exactly sparse case
— O(k log(n) log(n/k)) for approximately sparse case
— Improves over FFT fork << n

e Significant improvement in practice : n/k > 32

e klogn time for approximately sparse signals?

* Not clear: klog(n/k) samples needed, extra log n for
processing.



