Faster Algorithms for Sparse Fourier Transform

Haitham Hassanieh

Piotr Indyk

Dina Katabi

Eric Price

MIT

Material from:

- •Hassanieh, Indyk, Katabi, Price, "Simple and Practical Algorithms for Sparse Fourier Transform, SODA'12.
- •Hassanieh, Indyk, Katabi, Price, "Nearly Optimal Sparse Fourier Transform", STOC'12.

The Discrete Fourier Transform

- **Discrete Fourier Transform:**
 - Given: a signal $\mathbf{x} \in \mathbb{C}^n$
 - Goal: compute the frequency vector $\hat{\mathbf{x}}$ such that for $f \in [1 ... n]$:

$$\hat{\mathbf{x}}_f = \sum \mathbf{x}_t \, e^{-\mathrm{i} \, 2\pi \, t f/n}$$

- Fundamental tool:
 - Compression (audio, image, video)
 - Signal processing
 - Data analysis
 - Wireless Communication
- Fastest algorithm since 1960s

 $\mathsf{FFT} : \mathsf{O}(n \log n) \mathsf{time}$

DFT of Audio Samples (Frequency)

Sparse Fourier Transform

Time Domain Signal

Sparse Frequency
Spectrum

Approximately Sparse Frequency Spectrum

- Often the Fourier transform is dominated by a small number of "peaks"
 - Only few of the frequency coefficients are nonzero.
 - An exactly k-sparse signal has only k nonzero frequency coefficients.
 - In practice: approximate a sparse signal using the k largest peaks.
- Problem : Can we recover the k-sparse frequency spectrum faster than FFT?

Previous Work

- Algorithms:
 - [KM92, Mansour92, GGIMS02, AGS03, GMS05, Iwen10, Aka10]
- Best running time: [GMS05] $O(k \log^4 n)$
 - In theory : Improves over FFT for $n/k >> \log^3 n$
 - In practice : Large constants; need n/k > 40,000 to beat FFT
- Goal:
 - Theory: improve over FFT for all values of k = o(n)
 - Practice: faster runtime than FFT.

Our results

- Randomized algorithms, with large constant probability of success
- Exactly k-sparse case, recover $\hat{\mathbf{x}}$: $O(k \log n)$
 - Optimal if FFT optimal
- Approximately k-sparse case, recover $\widehat{\mathbf{x}'}$:
 - $\operatorname{Let} \operatorname{Err}_{2}^{k}(\hat{\mathbf{x}}) = \min_{k \text{ sparse } \hat{\mathbf{x}}_{k}} \|\hat{\mathbf{x}} \hat{\mathbf{x}}_{k}\|_{2}$
 - $|\mathbf{l}_2| \mathbf{l}_2$ guarantee $\|\hat{\mathbf{x}}' \hat{\mathbf{x}}\|_2 \le c \times \mathrm{Err}_2^k(\hat{\mathbf{x}})$: $O(k \log(n) \log(n/k))$
 - Improves over FFT for any $k \ll n$
 - $|\mathbf{l}_{\infty}/\mathbf{l}_{2}|$ guarantee $\|\hat{\mathbf{x}'} \hat{\mathbf{x}}\|_{\infty} \le \frac{c}{\sqrt{k}} \operatorname{Err}_{2}^{k}(\hat{\mathbf{x}})$: $O(\sqrt{nk \log n} \log n)$
 - Improves over FFT for $k \ll n/\log n$

Sparse FFT - Algorithm

Intuition

Time Domain Signal

Cut off Time signal

First B samples

n-point DFT : $n \log(n)$

X

 $\hat{\mathbf{x}}$

n-point DFT of first B terms: $n \log(n)$

 $\mathbf{x} \times \mathbf{Boxcar}$

B-point DFT of first B terms: $B \log(B)$

Alias $(x \times Boxcar)$

Subsample $(\hat{\mathbf{x}} * \mathsf{sinc})$

Framework

- oint DFT B-point DFT of first B sample
- D be explored in
- "Hashes" the n frequency coefficients into B buckets in $O(B \log B)$ time
- n/B frequencies coefficients hash into each bucket.
- Ideally we want:
 - Value of each bucket = sum over n/B frequencies that hash to it.
 - If one large frequency in the bucket → Estimate its value from value of the bucket.

Issues

- Leakage
 - value of bucket = Subsample ($\hat{\mathbf{x}} * \mathbf{sinc}$)
 - sum over all frequencies weighted by sinc
 - frequencies outside the bucket leak power into the bucket.
 - Replace sinc with a better Filter
 - GOAL: Subsample $(\hat{\mathbf{x}} * \mathbf{Filter}) = \text{sum only over } n/B$ frequencies that hash to the bucket
- Given these B buckets, how can we estimate the locations and values the k large frequencies?

Filter: Sinc

 $\hat{F} = Sinc$

- Polynomial decay
- Leaking many buckets

Filter: Boxcar

- Large support in time domain → Cannot truncate
- Need all n time domain samples

Filter: Gaussian

- Exponential decay
- Leaking to $\sqrt{\log n}$ buckets

Filters: Wider Gaussian

F = Wider Gaussian

 $\hat{F} = Narrow Gaussian$

- Exponential decay
- Leaking to 0 buckets
- But trivial contribution to the correct bucket

 $\hat{F} = \text{Boxcar} * \text{Gaussian}$

- Still exponential decay
- Leaking to at most 1 bucket
- Sufficient contribution to the correct bucket
- Small support in time domain

Filter (frequency): Gaussian * boxcar

– Gaussian with standard deviation : $B\sqrt{\log n}$

– Gaussian with standard deviation : $B\sqrt{\log n}$

- Gaussian with standard deviation : $B\sqrt{\log n}$
- Filter F has a support of $B \log n$ in the time domain
- Alias $(\mathbf{x} \times \mathbf{F})$ into B samples

Finding the support

- $\hat{\mathbf{y}} = \text{B-point DFT } (\mathbf{x} \times F) = \text{Subsample } (\hat{\mathbf{x}} * \hat{F})$
- Assume no collisions:
 - At most one large frequency hashes into each bucket.
 - Large frequency f_1 hashes to bucket b_1 :

$$\hat{\mathbf{y}}_{b_1} = \hat{\mathbf{x}}_{f_1} \times \hat{F}_{\Delta} + \text{leakage}$$

- Recall: DFT(\mathbf{x}^{τ}) = $\hat{\mathbf{x}} \times e^{-i 2\pi \tau f/n}$
- $-\hat{\mathbf{y}}^{\tau}$ = B-point DFT $(\mathbf{x}^{\tau} \times F)$: $\hat{\mathbf{y}}^{\tau}_{h_1} = \hat{\mathbf{x}}_{f_1} \times e^{-i 2\pi \tau f_1/n} \times \hat{F}_{\Delta} + \text{leakage}$

Finding the support

- $\hat{\mathbf{y}} = \text{B-point DFT } (\mathbf{x} \times F) = \text{Subsample } (\hat{\mathbf{x}} * \hat{F})$
- Assume no collisions:
 - At most one large frequency hashes into each bucket.
 - Large frequency f_1 hashes to bucket b_1 :

$$\begin{split} \widehat{\mathbf{y}}_{b_1} &= \widehat{\mathbf{x}}_{f_1} \times \widehat{F}_{\Delta} \\ \widehat{\mathbf{y}}^{\mathbf{1}}_{b_1} &= \widehat{\mathbf{x}}_{f_1} \times e^{-\mathrm{i} \, 2\pi \, f_1/n} \times \widehat{F}_{\Delta} \\ \\ \frac{\widehat{y}_{b_1}}{\widehat{y}^{\mathbf{1}}_{b_1}} &= e^{-\mathrm{i} \, 2\pi \, f_1/n} \quad \boldsymbol{\rightarrow} \, \mathrm{angle} \left(\frac{\widehat{y}_{b_1}}{\widehat{y}^{\mathbf{1}}_{b_1}} \right) = -2\pi \, f_1/n \end{split}$$

$$f_1 = -\frac{n}{2\pi} \cdot \operatorname{angle}\left(\frac{\widehat{\mathbf{y}}_{b_1}}{\widehat{\mathbf{y}}^1_{b_1}}\right) \operatorname{mod} n$$
 $\widehat{\mathbf{x}}_{f_1} = \frac{\widehat{\mathbf{y}}_{b_1}}{\widehat{F}_{\Delta}}$

Random Hashing

- Some Large frequencies collide:
 - Subtract and recurse
 - Small number of collisions → converges in few iterations

- Every iteration needs new random hashing:
 - Permute time domain signal → permute frequency domain
 - $-\sigma$ is invertible mod n:

$$\mathbf{x'}_t = \mathbf{x}_{\sigma t} \times e^{-i 2\pi t \beta/n}$$
 $\hat{\mathbf{x}}'_f = \hat{\mathbf{x}}_{\sigma^{-1}f + \beta}$

Algorithm

• Iteration i :

- $-B_i \propto k/2^{i-1}$
- Permute spectrum : $\mathbf{x'}_t = \mathbf{x}_{\sigma t} \times e^{-i 2\pi t \beta/n}$
- $-\hat{\mathbf{y}} = B_i$ -point DFT $(\mathbf{x}' \times F)$ = Subsample $(\hat{\mathbf{x}}' * \hat{F})$
- Repeat with time shift to get $\hat{\mathbf{y}}^{\tau}$
- Subtract large frequencies recovered in previous iterations
- Recover locations and values of remaining large frequencies
- Iteration i recovers $k/2^i$ of the large frequencies with probability 3/4 in $O(B_i \log n)$ time

Theorem: Recover $\hat{\mathbf{x}}$ in $O(k \log n)$ with probability 3/4

Experiments (variant exactly k-sparse algorithm)

Experiments

Experiments, ctd

Conclusions

- Sparse Fourier Transform with running times :
 - $-O(k \log n)$ for exactly sparse case
 - $-O(k \log(n) \log(n/k))$ for approximately sparse case
 - Improves over FFT for k << n
- Significant improvement in practice : n/k > 32
- $k \log n$ time for **approximately** sparse signals?
 - Not clear: $k \log(n/k)$ samples needed, extra $\log n$ for processing.