Faster Algorithms for Sparse Fourier Transform

Haitham Hassanieh

Piotr Indyk Dina Katabi Eric Price

MIT

Material from:

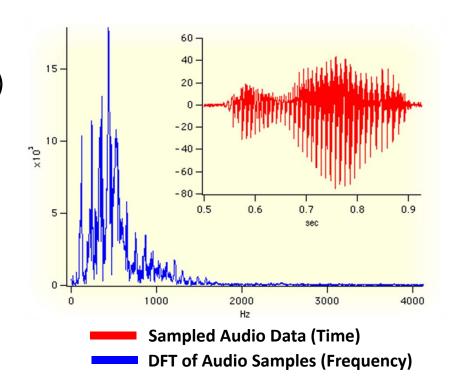
- •Hassanieh, Indyk, Katabi, Price, "Simple and Practical Algorithms for Sparse Fourier Transform, SODA'12.
- •Hassanieh, Indyk, Katabi, Price, "Nearly Optimal Sparse Fourier Transform", STOC'12.

The Discrete Fourier Transform

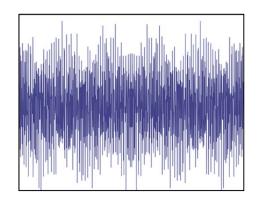
- Discrete Fourier Transform:
 - Given: a signal $\mathbf{x} \in \mathbb{C}^n$
 - Goal: compute the frequency vector $\hat{\mathbf{x}}$ such that for $f \in [1 ... n]$:

$$\hat{\mathbf{x}}_f = \sum \mathbf{x}_t \, e^{-\mathrm{i} \, 2\pi \, t f/n}$$

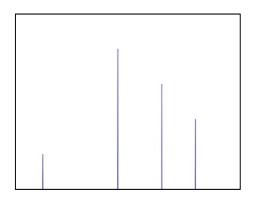
- Fundamental tool:
 - Compression (audio, image, video)
 - Signal processing
 - Data analysis
 - Wireless Communication
 - **—** ...
- FFT : $O(n \log n)$ time



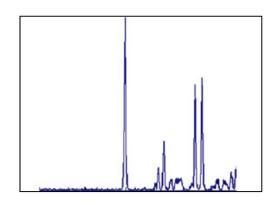
Sparse Fourier Transform



Time Domain Signal



Sparse Frequency
Spectrum



Approximately Sparse Frequency Spectrum

- Often the Fourier transform is dominated by a small number of "peaks"
 - Only few of the frequency coefficients are nonzero.
 - An exactly k-sparse signal has only k nonzero frequency coefficients.
 - In practice: approximate a sparse signal using the k largest peaks.
- Problem : Can we recover the k-sparse frequency spectrum faster than FFT?

Previous Work

Algorithms:

- Boolean cube : [KM92], [GL89]. What about ℂ?
- Complex FT: [Mansour-92, GGIMS02, AGS03, GMS05, Iwen10, Aka10]
- Best running time: [GMS05] $O(k \log^4 n)$
 - In theory : Improves over FFT for $n/k >> \log^3 n$
 - In Practice : Large constants; need n/k > 40,000 to beat FFT

Goal:

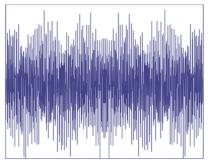
- Theory: improve over FFT for all values of k = o(n)
- Practice: faster runtime than FFT.

Our results

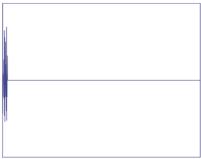
- Randomized algorithms, with constant probability of success
- Exactly k-sparse case, recover $\hat{\mathbf{x}}$: $O(k \log n)$
 - Optimal if FFT optimal
- Approximately k-sparse case, recover $\widehat{\mathbf{x}'}$:
 - $\operatorname{Let} \operatorname{Err}_{2}^{k}(\hat{\mathbf{x}}) = \min_{k \text{ sparse } \hat{\mathbf{x}}_{k}} \|\hat{\mathbf{x}} \hat{\mathbf{x}}_{k}\|_{2}$
 - $|\mathbf{l}_2|_2$ guarantee $\|\hat{\mathbf{x}}' \hat{\mathbf{x}}\|_2 \le c \times \operatorname{Err}_2^k(\hat{\mathbf{x}})$: $O(k \log(n) \log(n/k))$
 - Improves over FFT for any $k \ll n$
 - $|\mathbf{l}_{\infty}/\mathbf{l}_{2}|$ guarantee $\|\hat{\mathbf{x}'} \hat{\mathbf{x}}\|_{\infty} \le \frac{c}{\sqrt{k}} \operatorname{Err}_{2}^{k}(\hat{\mathbf{x}})$: $O(\sqrt{nk \log n} \log n)$
 - Improves over FFT for $k \ll n/\log n$

Sparse FFT - Algorithm

Intuition

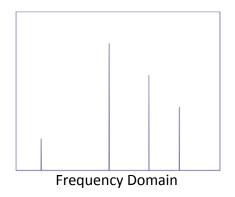


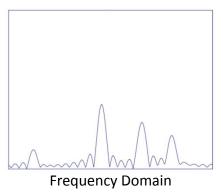
Time Domain Signal

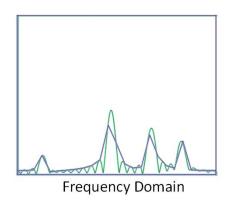


Cut off Time signal

First B samples







n-point DFT : $n \log(n)$

X

 $\hat{\mathbf{x}}$

n-point DFT of first B terms: $n \log(n)$

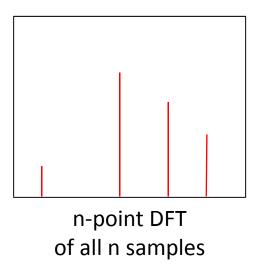
 $\mathbf{x} \times \mathbf{Boxcar}$

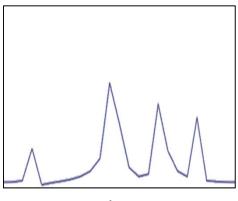
B-point DFT of first B terms: $B \log(B)$

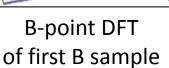
Alias $(x \times Boxcar)$

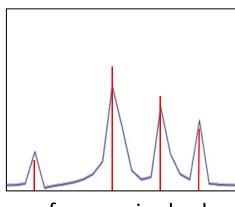
Subsample $(\hat{\mathbf{x}} * \mathsf{sinc})$

Framework





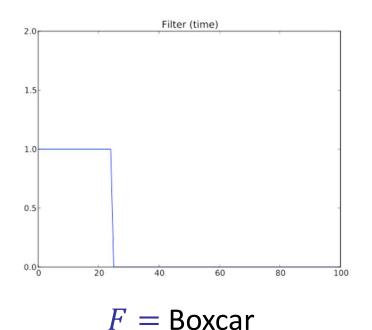


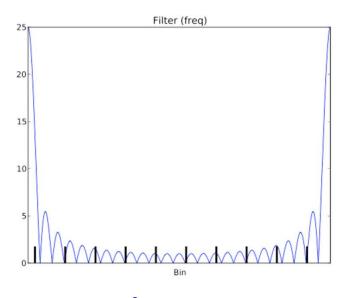


n frequencies hash into B buckets

- "Hashes" the n Fourier coefficients into B buckets in $O(B \log B)$ time
- Issues
 - Leakage : Subsample $(\hat{x} * Fifter)$
 - Given these B buckets, how can we estimate the locations and values the k large frequencies?

Filter: Sinc

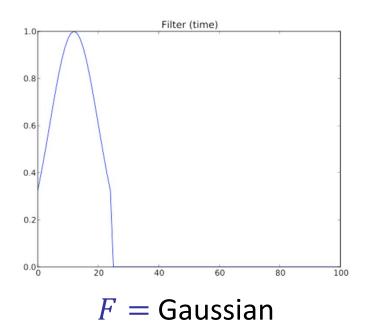


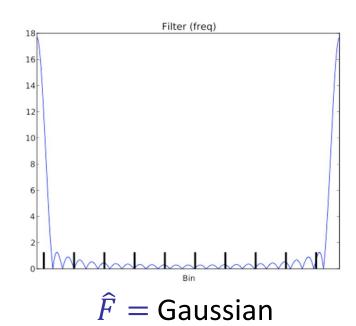


 $\hat{F} = Sinc$

- Polynomial decay
- Leaking many buckets

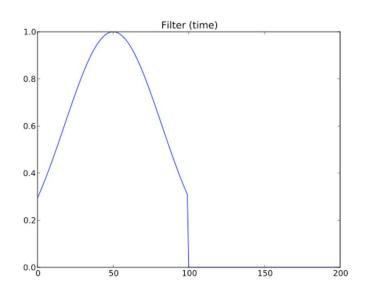
Filter: Gaussian



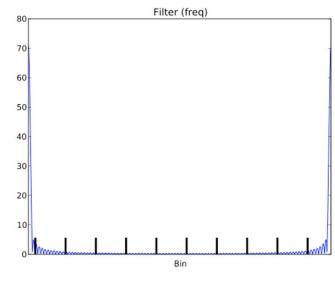


- Exponential decay
- Leaking to $\sqrt{\log n}$ buckets

Filters: Wider Gaussian



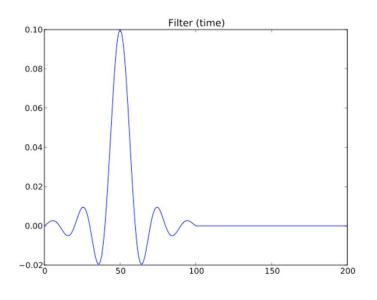
F =Wider Gaussian

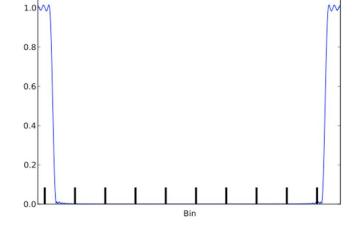


 $\hat{F} = Narrow Gaussian$

- Exponential decay
- Leaking to <1 buckets</p>
- But trivial contribution to the correct bucket

Filters: Sinc × Gaussian





Filter (freq)

 $F = Sinc \times Gaussian$

 $\hat{F} = \text{Boxcar} * \text{Gaussian}$

- Boxcar size n/B: n/B frequencies hash into each bucket
- Still exponential decay
- Leaking to at most 1 bucket
- Sufficient contribution to the correct bucket [-n/2B, n/2B]
- Replace Gaussians with "Dolph-Chebyshev window functions"

Finding the support

- $\hat{\mathbf{y}} = \text{B-point DFT } (\mathbf{x} \times F) = \text{Subsample } (\hat{\mathbf{x}} * \hat{F})$
- Assume no collisions:
 - At most one large frequency hashes into each bucket.
 - Large frequency f_1 hashes to bucket b_1 :

$$\hat{\mathbf{y}}_{b_1} = \hat{\mathbf{x}}_{f_1} \times \hat{F}_{\Delta} + \text{leakage}$$

- Recall: DFT(\mathbf{x}^{τ}) = $\hat{\mathbf{x}} \times e^{-i 2\pi \tau f/n}$
- $-\hat{\mathbf{y}}^{\tau} = \text{B-point DFT } (\mathbf{x}^{\tau} \times F) :$

$$\hat{\mathbf{y}}_{b_1}^{\tau} = \hat{\mathbf{x}}_{f_1} \times e^{-i 2\pi \tau f_1/n} \times \hat{F}_{\Delta} + \text{leakage}$$

Finding the support

- $\hat{\mathbf{y}} = \text{B-point DFT } (\mathbf{x} \times F) = \text{Subsample } (\hat{\mathbf{x}} * \hat{F})$
- Assume no collisions:
 - At most one large frequency hashes into each bucket.
 - Large frequency f_1 hashes to bucket b_1 :

$$\hat{\mathbf{y}}_{b_1} = \hat{\mathbf{x}}_{f_1} \times \hat{F}_{\Delta}$$

$$\hat{\mathbf{y}}_{b_1}^1 = \hat{\mathbf{x}}_{f_1} \times e^{-i 2\pi 1 f_1/n} \times \hat{F}_{\Delta}$$

$$f_1 = -\frac{n}{2\pi} \angle \left(\frac{\widehat{\mathbf{y}}_{b_1}}{\widehat{\mathbf{y}}_{b_1}}\right) \bmod n \qquad \widehat{\mathbf{x}}_{f_1} = \frac{\widehat{\mathbf{y}}_{b_1}}{\widehat{F}_{\Delta}}$$

- Find all frequencies in $2B \log(B)$

Random Hashing

- Some Large frequencies collide:
 - Subtract and recurs
 - Small number of collisions → converges in few iterations
- Every iteration needs new random hashing:
 - Permute time domain signal → permute frequency domain
 - $-\sigma$ is invertible mod n:

$$\mathbf{x'}_t = \mathbf{x}_{\sigma t} \times e^{-i 2\pi t \beta/n}$$
 $\hat{\mathbf{x}}'_f = \hat{\mathbf{x}}_{\sigma^{-1}f + \beta}$

- Permutation : $f = \sigma^{-1}f + \beta \mod n$

Algorithm

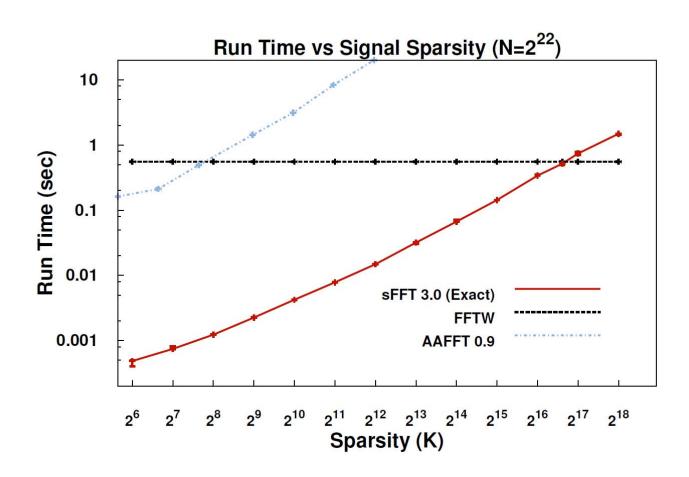
- Iteration i:
 - $-B_i \propto k/2^{i-1}$
 - Permute spectrum : $\mathbf{x'}_t = \mathbf{x}_{\sigma t} \times e^{-i 2\pi t \beta/n}$
 - $-\hat{\mathbf{y}} = B_i$ -point DFT $(\mathbf{x}' \times F)$ = Subsample $(\hat{\mathbf{x}}' * \hat{F})$
 - Recover locations and values of large frequencies
- Each iteration takes $O(B_i \log B_i)$ time.
- $O(\log k)$ iterations
- Total time : $O(k \log n)$

Experiments (exactly k-sparse algorithm)

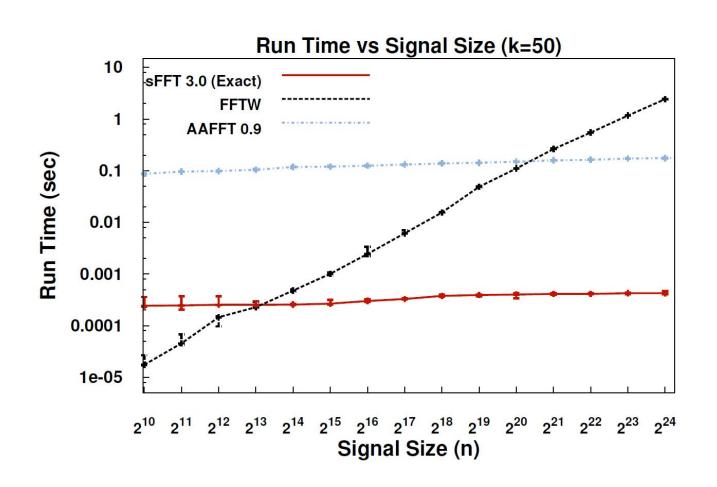
Setup

- Similar to earlier work:
 - Random 0-1 k-sparse vectors x̂
 - Fix n, vary k
 - Fix k, vary n

Experiments



Experiments, ctd



Conclusions

- Sparse FFT with running times :
 - $-O(k \log n)$ for exactly sparse case
 - $-O(k \log(n) \log(n/k))$ for approximately sparse case
 - Improves over FFT for k << n
- Significant improvement in practice

- $k \log n$ time for **approximately** sparse signals?
 - Not clear: $k \log(n/k)$ samples needed, extra $\log n$ for FT