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The Discrete Fourier Transform

Discrete Fourier Transform:
— Given: asignalx € C"
— Goal: compute the frequency vector X such thatfor f € [1...n]:

)/Zf — th e-12mtf/n

Fundamental tool:

o
— Compression (audio, image, video) 1 2]
— Signal processing | zz—wﬁm
— Data analysis T :
o5 oe o1 os o3

— Wireless Communication

F FT : O (n log n) ti m e ’ _f IUIOD ZDII]U‘ SOIUU 4UIDD

Hz
mmmmm Sampled Audio Data (Time)
mmmmm DFT of Audio Samples (Frequency)




Sparse Fourier Transform
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e Often the Fourier transform is dominated by a small number of

IlpeakS”

— Only few of the frequency coefficients are nonzero.

— An exactly k-sparse signal has only k nonzero frequency coefficients.

— In practice : approximate a sparse signal using the k largest peaks.

* Problem : Can we recover the k-sparse frequency spectrum faster than FFT?



Previous Work

e Algorithms:

— Boolean cube : [KM92], [GL89]. What about C ?
— Complex FT: [Mansour-92, GGIMS02, AGS03, GMSO05, Iwen10, Aka10]

e Best running time: [GMS05] O(k log* n)
— Intheory : Improves over FFT forn/k >> log3n
— In Practice : Large constants; need n/k > 40,000 to beat FFT

e Goal:

— Theory: improve over FFT for all values of k = 0(n)

— Practice: faster runtime than FFT.



Our results

e Randomized algorithms, with constant probability of success

e Exactly k-sparse case, recover X : 0(k logn)
— Optimal if FFT optimal

* Approximately k-sparse case, recover X' :

— LetErr¥(®) = min _ |IR — R,ll,
k sparse X

— |,/l, guarantee ||§’ — )?“ < ¢ X Err¥(): O(k log(n) log(n/k))

* Improves over FFT forany k < n

— I../1, guarantee ||x — x|| < —Err (X): O0(y/nklognlogn)

e Improves over FFT for k « n/logn



Sparse FFT - Algorithm



Time Domain Signal

Cut off Time signal

First B samples

Intuition

Frequency Domain
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Frequency Domain

N

Frequency Domain

n-point DFT : nlog(n)

x mp 3

n-point DFT of first B
terms : nlog(n)

X X Boxcar ‘ X * sinc

B-point DFT of first B
terms: B log(B)

Alias (x X Boxcar)

!

Subsample (X * sinc)



Framework

n-point DFT B-point DFT n frequencies hash
of all n samples of first B sample into B buckets

e “Hashes” the n Fourier coefficients into B
buckets in O(B log B) time

* |ssues
— Leakage : Subsample (X * Biltey)

— Given these B buckets, how can we estimate the
locations and values the k large frequencies?




Filter: Sinc

Filter (time)
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F = Boxcar

— Polynomial decay

— Leaking many buckets

100

25y

Filter (freq)
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Filter: Gaussian

Filter (freq)

i . Filter (time) _ i ~ id
PR |
[ 16‘1‘
0.8 J"J "“.‘ 14 “
) 1
[
| |‘ 12 |
0.6} | \ [
{ \ 10 |
1
8 |
0.4 ‘.‘
\ 6
' |
| oA
0.2 1 1|
r 2 |I ‘|
N \ |
‘L ATLAYY O I S I B O VYA |
0-05 20 a0 60 80 100 Bin

F = Gaussian F = Gaussian

— Exponential decay

— Leaking to /logn buckets



Filters: Wider Gaussian

Filter (time)

Filter (freq)

40
30
20 |
10 !

; “u’wmj (U -
Bin

100

F = Wider Gaussian

— Exponential decay
— Leaking to <1 buckets

F = Narrow Gaussian

— But trivial contribution to the correct bucket



Filters: Sinc x Gaussian

430 f‘. Filter (time) 13 Filter (freq)
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F = Sinc x Gaussian F = Boxcar * Gaussian

— Boxcar size n/B: n/B frequencies hash into each bucket
— Still exponential decay

— Leaking to at most 1 bucket
— Sufficient contribution to the correct bucket |[—n/2B ,n/2B]|
— Replace Gaussians with “Dolph-Chebyshev window functions”



Finding the support
e V=B-point DFT (x X F) =Subsample (ﬁ*ﬁ)

 Assume no collisions:
— At most one large frequency hashes into each bucket.
— Large frequency f; hashes to bucket b :

Vo, =R;, X F) + leakage
— Recall: DFT(X?) = & x e 12me//n

— §* =B-point DFT (X* X F) :
S\,Tbl =Ry, X 12T Tf1/n FA n m



Finding the support
e V=B-point DFT (x X F) =Subsample (ﬁ*ﬁ)

 Assume no collisions:
— At most one large frequency hashes into each bucket.
— Large frequency f; hashes to bucket b :

S\’b1 =ﬁf1 X Fy

— Find all frequencies in 2B log(B)



Random Hashing

e Some Large frequencies collide:
— Subtract and recurs
— Small number of collisions = converges in few iterations

e Every iteration needs new random hashing:

— Permute time domain signal 2 permute frequency domain

— o is invertible mod n :

—i2ntf/n S/

’ — _/\
Xt—XGtXB Xf_XO'_lf-l'ﬁ

— Permutation: f = o 1f + f modn



Algorithm

Iteration i :

— B; xk/21

— Permute spectrum : X'; =X, X €
— ¥ = B; -point DFT (X' X F) = Subsample (ﬁ’ * F")

— Recover locations and values of large frequencies

—i2mtf/n

Each iteration takes O(B; log B;) time.
O (log k) iterations
Total time : O (k logn)



Experiments
(exactly k-sparse algorithm)



Setup

e Similar to earlier work:
— Random 0-1 k-sparse vectors X
— Fix n, vary k
— Fix k, vary n
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Experiments

Run Time vs Signal Sparsity (N=222)
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Run Time (sec)
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Run Time vs Signal Size (k=50)
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Conclusions

e Sparse FFT with running times :
— O(klogn) for exactly sparse case
— O(k log(n) log(n/k)) for approximately sparse case
— Improves over FFT fork << n

e Significant improvement in practice

* klogn time for approximately sparse signals?
* Not clear: k log(n/k) samples needed, extra logn for FT



