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Abstract

The Fourier transform is one of the most fundamental toalséonputing the frequency repre-

sentation of signals. It plays a central role in signal pssagy, communications, audio and video
compression, medical imaging, genomics, astronomy, asasehany other areas. Because of its
widespread use, fast algorithms for computing the Fouragrsform can benefit a large number of
applications. The fastest algorithm for computing the kguransform is the FFT (Fast Fourier

Transform) which runs in near-linear time making it an ipeissable tool for many applications.

However, today, the runtime of the FFT algorithm is no loniget enough especially for big data

problems where each dataset can be few terabytes. Hentse, dggorithms that run in sublinear

time,i.e.,, do not even sample all the data points, have become negessar

This thesis addresses the above problem by developing #rseSpourier Transform algo-
rithms and building practical systems that use these athors to solve key problems in six differ-
ent applications.

Specifically, on the theory front, the thesis introducesSparse Fourier Transform algorithms:
a family of sublinear time algorithms for computing the Heutransform faster than FFT. The
Sparse Fourier Transform is based on the insight that mamyrerld signals are sparseg., most
of the frequencies have negligible contribution to the allesignal. Exploiting this sparsity, the
thesis introduces several new algorithms which encompassiain axes:

¢ Runtime Complexity: The thesis presents nearly optimal Sparse Fourier Transdtgorithms
that are faster than FFT and have the lowest runtime conplierown to date.

e Sampling Complexity: The thesis presents Sparse Fourier Transform algoriththsoptimal
sampling complexity in the average case and the same negatilpyal runtime complexity.
These algorithms use the minimum number of input data sanaple hence, reduce acquisition
cost and I/O overhead.

On the systems front, the thesis develops software and laaedwchitectures for leveraging the
Sparse Fourier Transform to address practical problemppheal fields. Our systems customize
the theoretical algorithms to capture the structure ofspain each application, and hence max-
imize the resulting gains. We prototype all of our systems ewaluate them in accordance with
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the standard’s of each application domain. The followirsg gjives an overview of the systems
presented in this thesis.

Wireless Networks: The thesis demonstrates how to use the Sparse Fourier drarisf build
awireless receiver that captures GHz-wide signals witeatpling at the Nyquist rate. Hence,
it enables wideband spectrum sensing and acquisition gsiegp commodity hardware.

Mobile Systems:The thesis uses the Sparse Fourier Transform to design a&&eiar that
both reduces the delay to find the location and decrease®tier gonsumption by 2.

Computer Graphics: Light fields enable new virtual reality and computationabfgraphy
applications like interactive viewpoint changes, depthrastion and refocusing. The thesis
shows that reconstructing light field images using the Splaosirier Transform reduces camera
sampling requirements and improves image reconstructiahty,

Medical Imaging: The thesis enables efficient magnetic resonance speqofdiRS), a new
medical imaging technique that can reveal biomarkers f&gakies like autism and cancer. The
thesis shows how to improve the image quality while redudivegtime a patient spends in an
MRI machine by3 x (e.g., from two hours to less than forty minutes).

Biochemistry: The thesis demonstrates that the Sparse Fourier Transéalmces NMR (Nu-
clear Magnetic Resonance) experiment timelby (e.g. from weeks to days), enabling high
dimensional NMR needed for discovering complex proteincttires.

Digital Circuits: The thesis develops a chip with the largest Fourier Transfaar date for
sparse data. It delivers a 0.75 million point Sparse Fodmansform chip that consumes x
less power than prior FFT VLSI implementations.

Thesis Supervisor: Dina Katabi
Title: Professor
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Chapter 1

Introduction

The Fourier transform is one of the most important and widedgd computational tasks. It is

a foundational tool commonly used to analyze the spectpksentation of signals. Its applica-
tions include audio/video processing, radar and GPS sgsteireless communications, medical
imaging and spectroscopy, the processing of seismic datamany other tasks [14, 27, 77, 137,
176, 183]. Hence, faster algorithms for computing the Fauransform can benefit a wide range
of applications. The fastest algorithm to compute the Furansform today is the Fast Fourier
Transform (FFT) algorithm [34]. Invented in 1965 by Cooleydarukey, the FFT computes the

Fourier transform of a signal of sizein O(nlog n) time. This near-linear time of the FFT made
it one of the most influential algorithms in recent historg [3However, the emergence of big data
problems, in which the processed datasets can exceedtes:dhg4], has rendered the FFT's run-
time too slow. Furthermore, in many domains (e.g., medioaljing, computational photography),

data acquisition is costly or cumbersome, and hence one magdble to collect enough measure-
ments to compute the FFT. These scenarios motivate the peadlflinear time algorithms that

compute the Fourier transform faster than the FFT algoridimth use only a subset of the input
data required by the FFT.

The key insight to enable sublinear Fourier transform atligons is to exploit the inhergpar-
sity of natural signals. In many applications, most of the Fowaefficients of the signal are small
or equal to zero, i.e., the output of the Fourier transforisparse For such signals, one does not
need to compute the entire output of the Fourier transfotns, sufficient to only compute the
large frequency coefficients. Fourier sparsity is in faciy\aommon as it appears in audio/video,
medical imaging, computational learning theory, analg$iBoolean functions, similarity search
in databases, spectrum sensing, datacenter monitorm{f, &8, 9%, 112, 114, 130].

The research presented in this thesis pursues the aboghtirsthe context of both algorithms
and systems in order to answer the following two core questio

How can we leverage sparsity to design faster Fourier tramsfalgorithms?
&

How do we build software and hardware systems that adapt ourighgas to
various application domains in order to deliver practicaligs?
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This thesis answers the above questions by developing thes&g-ourier Transform algo-
rithms: a family of sublinear algorithms for computing theuFier transform of frequency-sparse
signals faster than FFT and using a small subset of the irpupkes. The thesis also develops
architectures for leveraging sparsity to build practigatems that solve key problems in wireless
networks, mobile systems, computer graphics, medicalimga@iochemistry and digital circuits.

This thesis makes both theoretical and systems contrifmitibhe theoretical contributions
form the algorithmic foundations of the Sparse Fourier $farm which encompass two main
axes:

e Optimizing the Runtime Complexity: The thesis presents Sparse Fourier Transform algo-
rithms with the lowest runtime complexity known to date. Eractly sparse signals, we present
an algorithm that runs i (% log n) time wherek is the number of large frequency coefficients
(i.e. sparsity) and is the signal size. This algorithm is optimal if the FFT algfum is optimal.

For approximately sparse signals, which we will formallyide in Section 1.1.1, we present an
algorithm that runs irO (% log n log (n/k)) time which islog n factor away from optimal. Both
algorithms improve over FFT for any sparsity= o(n) and have small “Big-Oh” constants.
As aresult, they are often faster than FFT in practice andjuickly on very large data sets.

e Optimizing the Sampling Complexity: The thesis presents Sparse Fourier Transform algo-
rithms with theoptimal sampling complexity for average case inputs, these algorithms
use the minimum number of input data samples that would m®ducorrect answer. Hence,
they reduce the acquisition cost, bandwidth and I/O ovethmesgeded to collect, transfer and
store the data. Specifically, these algorithms require 6rly) samples for exactly sparse sig-
nals andO (k log n) samples for approximately sparse signals while keepingdhee runtime
complexity of the aforementioned worst case algorithmstifeumore, the algorithms naturally
extend to multi-dimensional Sparse Fourier Transformtauit incurring much overhead.

The simplicity and practicality of the Sparse Fourier Tfan® algorithms allowed us to use
them to build six new systems that address major challemgieiareas of wireless networks and
mobile systems, computer graphics, medical imaging, l@otstry and digital circuits. Table 1.1
summarizes the systems developed in this thesis and ourledigns to each application.

Leveraging the Sparse Fourier Transform to build pracsyatems, however, is not always
straightforward. The Sparse Fourier Transform is a franmkewed algorithms and techniques for
analyzing sparse signals. It inherently depends on thesigpaf the signal which changes from
one application to another. Thus, incorporating domainakedge from each application allows
us to deliver much more significant gains. First, differgmplecations exhibit different levels and
structure of sparsity. For example, in wireless networksupied frequencies in the wireless spec-
trum are not randomly distributed. They are instead clestérased on transmission regulations
set by the FCC. Hence, incorporating the structure of the gpamnto the algorithm and system is
essential for achieving good performance gains. In additosome applications such as medical
imaging, the sparsity of the signal is not apparent, whicjuires developing methods to sparsify
the signal before being able to use the Sparse Fourier Tnanstn other applications, sparsity
appears only in part of the system and thus we have to redésgmtire system in order to prop-
agate the gains of the Sparse Fourier Transform to otheestaigd improve the overall system
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Wireless Networks Medical Imaging

Spectrum Sensing & Acquisition Magnetic Resonance Imaging (MRI)
Realtime GHz-wide spectrum acquisition requires costlyMagnetic resonance spectroscopy (MRS) detects the
and highly customized hardware that consumes higtbiochemical content of each voxel in the brain and can
power. be used to discover disease biomarkers.
Contribution: Built a receiver that can acquire a bandt Contribution: Delivered a system for processing MRS
width 6x larger than its digital sampling rate enabling data that enhances image quality and reduces the time
realtime GHz spectrum sensing and decoding usinghe patient has to spend in the MRI machine by. 3
cheap components typically used in WiFi receivers.
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Mobile Systems Biochemistry
GPS Nuclear Magnetic Resonance
N &Q GPS receivers consume a lot of pow NMR is used to discover biomolecular
&@ = on mobile devices which drains the bat- structures of proteins.

Contribution: Reduced NMR exper
Contribution: Designed a GPS receive iment time by 16 enabling high-
that reduces the time and power it tak dimensional NMR which is needed fqg
the receiver to lock on its location. discovering complex protein structures.

7 tery.

=

Computer Graphics Digital Circuits

Light Field Photography Sparse Fourier Chip
Light field photography uses a cameré Massive size Fourier transforms require
array to refocus and change the vie large silicon area and consume high
point in post-processing. power.
M Contribution: Developed a light field Contribution: Delivered a 0.75 million

oA reconstruction system that reduces the point Fourier transform chip for sparse
camera sampling requirements and im- data that consumes 40ess power thar
proves image reconstruction quality. prior FFT VLSI implementations.

Table 1.1:Practical Systems Developed Using the Sparse Fourier Trafsm
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performance. Hence, adapting the Sparse Fourier Trangfdaorpractical applications requires
a deep understanding of the application domain and custagnikze algorithms to become more
in-sync with the system requirements.

The next two sections provide an overview of the theoretdgdrithms and the software and
hardware systems developed in this thesis.

1.1 Sparse Fourier Transform Algorithms

The existence of Fourier transform algorithms faster them 5 one of the central questions in
the theory of algorithms. The past two decades have witdesigaificant advances in sublinear
Fourier algorithms for sparse signals. The first such dligori(for the Hadamard transform) ap-
peared in [102] (building or [63]). Since then, several swdar algorithms for complex Fourier
inputs have been discovered [5, 7, 57, 59, 88, 116]. The naduewf these algorithms is that they
outperform FFT’s runtime for sparse signals. For very spargnals, the fastest algorithm is due
to [59] and hasD(k log®(n)log(n/k)) runtime, for some: > 2. This algorithm outperforms FFT
for any & smaller thar©(n/log” n) for somea > 1.

Despite this impressive progress, the prior work suffessnftwo main limitations. First, none
of the existing algorithms improves over FFT’s runtime fbe twhole range of sparse signals,
i.e.,k = o(n). Second, the aforementioned algorithms are quite compled,suffer from large
“Big-Oh” constants that lead to long runtime in practice. Egample, an implementation of the
algorithm in [59] can only outperform FFT for extremely sparsignals wheré /n < 3.2 x
10~° [8S]. The algorithms in [57, 88] require an even sparseralidice., largern and smalleit).
As a result, it has been difficult to incorporate those atgams into practical systems.

In this section, we give an overview of our Sparse Fourien3term algorithms, which ad-
dress the above limitations of prior work. We start by fonzialy the problem. We then describe
the algorithmic framework underlying all of our Sparse Feuifransform algorithms. Once we
establish this framework, we describe the different teghes that can be used at each step of a
Sparse Fourier Transform algorithm. We finally present thegous algorithms that result from
using these techniques.

1.1.1 Problem Statement

Consider a signat of sizen whose discrete Fourier transformxgefined by:

%(f) = X x(1) - e (L1)
t=0

X is exactlyk-sparse if it has exactly non-zero frequency coefficients while the remaining %
coefficients are zero. In this case, the goal of the Sparsadfolransform is to exactly recover
x by finding the frequency positiorfsand value(f) of the k non-zero coefficients. For general
signals, the Sparse Fourier Transform computéssparse approximatiog’ of x. The bestk-
sparse approximatioof x can be obtained by setting all but the largestoefficients ofx to O.
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The goal is to compute an approximati&hin which the error in approximating is bounded
by the error on the bedit-sparse approximatianFormally,x has to satisfy the followind,//-
guarantee

£~ %< C min_ [yl (12)
-sparsey

where(C' is some approximation factor and the minimization is ovexotly k-sparse signals.
In the remainder of this section, we will describe the altpmic framework and techniques

in terms of exactly sparse signals. However, the full detard extensions to the general case of
approximately sparse signals can be found in Chapters 3dg.an

1.1.2 Algorithmic Framework

The Sparse Fourier Transform has three main componErgquency Bucketizatiorirrequency
Estimation andCollision Resolution

1. Frequency Bucketization:

The Sparse Fourier Transform starts by hashing the frequenefficients ofk into buckets such
that the value of the bucket is the sum of the values of theufaqy coefficients that hash into
the bucket. Sincg& is sparse, many buckets will be empty and can be simply disedaiThe algo-
rithm then focuses on the non-empty buckets and computgsoidons and values of the large
frequency coefficients in those buckets in what we callftbguency estimatiostep.

The process direquency bucketizatiae achieved through the use of filters. A filter suppresses
and zeroes out frequency coefficients that hash outsideutiebwhile passing through frequency
coefficients that hash into the bucket. The simplest exawipleis is the aliasing filter. Recall the
following basic property of the Fourier transforsubsampling in the time domain causes aliasing
in the frequency domairrormally, letb be a subsampled version»fi.e., b(i) = x(i - p) where
p is a subsampling factor that divides Then,b, the Fourier transform db is an aliased version
of x,i.e.

b(i) = pi_ofc(z’ +m(n/p)). (1.3)

Thus, an aliasing filter is a form of bucketization in whiceduencies equally spaced by an interval
B = n/p hash to the same bucket and there Breuch buckets as shown in Figure 1-1. The
hashing function resulting from this bucketization can b#ten as:h(f) = f mod n/p. Further,
the value in each bucket is the sum of the values of only trgu&acy coefficients that hash to the
bucket as can be seen from Equarior 1.3.

For the above aliasing filter, the buckets can be computedesftly using aB-point FFT which
takesO(B log B) time. We setB = O(k) and hence bucketization takes orly(% log k) time
and uses onhyO(B) = O(k) of the input samples at. In Section 1.1.3, we describe additional
types of filters that are used by our Sparse Fourier Trans&dgorithms to perfornfrequency
bucketization
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Figure 1-1Bucketization Using Aliasing Filter: Sub-sampling a signal by3in the time domain,
results in the spectrum aliasing. Specifically, the 12 fegapy will alias into 4 buckets. Frequencies
that are equally spaced by 4 (shown with the same color) ernl tlng same bucket.

2. Frequency Estimation:

In this step, the Sparse Fourier Transform estimates théigusand values of the non-zero fre-
guency coefficients which created the energy in each of theemapty buckets. Since is sparse,
many of the non-empty buckets will likely have a single nemezfrequency coefficient hashing
into them, and only a small number will have a collision of tipké non-zero coefficients. We
first focus on buckets with a single non-zero frequency adefits and estimate the value and the
position of this non-zero frequendye., X(f) and the corresponding

In the absence of a collision, the value of the non-zero fequ coefficient is the value of the
bucket it hashes to since all other frequencies that hashtiet bucket have zero values. Hence,
we can easily find the value of the non-zero frequency coefftan a bucket. However, we still
do not know its frequency positiofy sincefrequency bucketizatiomapped multiple frequencies
to the same bucket. The simplest way to compuie to leverage th@hase-rotation propertpf
the Fourier transform, which states that a shift in time dionmenslates into phase rotation in
the frequency domain [115]. Specifically, we perform thecess of bucketization again, after a
circular shift ofx by  samples. Since a shift in time translates into a phase ootatithe frequency
domain, the value of the bucket changes flofi) = X(f) tob(™ (i) = X(f)- /2% where the phase
rotation is:

Ap =27fT/n (1.4)

Hence, using the change in the phase of the bucket, we camagstihe position of the non-zero
frequency coefficient in the bucket. Note that the phase sveapund evergn and so the shift

7 should be 1 to avoid the phase wrapping for large valueg.oSince, there aré non-zero
frequency coefficients, thisequency estimationan be done efficiently using at mastk) com-
putations. In Section 1.1.3, we describe additional tesples that are used by our Sparse Fourier
Transform algorithms to estimate the values and positibn®o-zero frequency coefficients.

3. Collision Resolution:

Non-zero frequency coefficients that are isolated in theim bucket can be properly estimated as
described above. However, when non-zero frequenciesieali the same bucket, we are unable

INote that for approximately sparse signals, multiple timifts are used to average the noise and ensure robust
estimation as we show in Chapter 4.
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Figure 1-2:Resolving collisions with Co-prime Aliasing:Using 2 co-prime aliasing filters, we
ensure the frequencies that collide in one filter will notidelin the second. For example, frequen-
cies 5 and 9 collide in the first filter. But frequency 5 dies maltide in the second which allows
us to estimate it and subtract it.

to estimate them correctly. Hence, to recover the full fesguy spectrum, we need to resolve the
collisions.

To resolve collision, we need to repeat tinequency bucketizatiom a manner that ensures
that the same non-zero frequencies do not collide with edloer every time. The manner in
which we achieve this depends on the type of filter used fokdtization. For example, with
the aliasing filters described above, we can bucketize teetspn multiple times using aliasing
filters with co-prime sampling rates. This changes the mashinction fromi(f) = f mod n/p
to 2'(f) = f mod n/p’ wherep andp’ are co-prime. Co-prime aliasing filters guarantee that
any two frequencies that collide in one bucketization wdlt gollide in the other bucketization.
To better understand this point, consider the example iarE 4-2. The first time we bucketize,
we use an aliasing filter that sub-samples the time signal tagtar of 3. In this case, the two
frequencies labeled in red and blue collide in a bucket wasetige frequency labeled in green does
not collide, as shown in the figure. The second time we bun&give use an aliasing filter that sub-
samples by 4. This time the blue and green frequencies eallitereas the red frequency does not
collide. Now we can resolve collisions by iterating betwéas two bucketizations. For example,
we can estimate the green frequency from the first buckaizatvhere it does not collict:We
subtract the green frequency from the colliding bucket g sbcond bucketization to obtain the
blue frequency. We then go back to the first bucketizationsafract the blue frequency from the
bucket where it collides to obtain the red frequency.

Iterating between the different bucketizations by estintafrequencies from buckets where

2In Chapte- 5, we will present techniques to detect collisidtowever, accurately detecting collision is not always
necessary. Since is sparse, the number of collisions will be very small anémrricaused by assuming a non-zero
frequency is isolated when it is in a collision can be coeddéh subsequent iterations of the algorithm.
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they do not collide and subtracting them from buckets whieey do collide, ensures that each
non-zero frequency will be isolated in its own bucket dursagne iteration of the algorithm. This
allows us to estimate each non-zero frequency correctlys;Tat the end of the of the collision
resolution step, we have recovered all non-zero frequerarid hence have successfully computed
the Fourier transform of the signal.

1.1.3 Algorithmic Techniques

The previous section established a general framework fopcting the Sparse Fourier Transform
and gave one example of a technique that can be used in egcbfdtes framework. In this
section, we describe a more comprehensive list of techeithet are used by different Sparse
Fourier Transform algorithms.

1. Frequency Bucketization Techniques:

As described earlier bucketization is done using filtere ¢hoice of the filter can severely affect
the running time of a Sparse Fourier Transform algorithreally, we would like a filter that uses
a small number of input time samples to hash the frequendjicieats into buckets. For example,
the rectangular or boxcar filter shown in Figure 1-3(a), usdy B time samples to hash the
frequency coefficients int@ buckets which is ideal in time domain. However, in the fratpye
domain, itis equal to the sinc functidnyhich decays polynomially as shown in Figure 1-3(a). This
polynomial decay means that the frequency coefficientk*lbatween buckets,e., the value of
the bucket is no longer the sumof B coefficients that hash to the bucket. It is a weighted sum of
all the n frequency coefficients. Hence, a non-zero frequency caaftican never be isolated in
a bucket and estimated correctly. One the other hand, angrdt filter is ideal in the frequency
domain since it has no leakage as shown in Figure 1-3(b). Meni is sinc function in the time
domain and hence requires usingalhput samples which take at led3tn) time to process.

In this thesis, we identify several efficient filters that asemall number of samples in time
domain and have minimal or no leakage in the frequency doimaihas a result can be used to
perform fast bucketization.

e Flat Window Filter: This filter looks very similar to a rectangle or box in the fueqcy do-
main while still using a small number of time samples. An eglaof such filter is a Gaussian
function multiplied by a sinc function in the time domain whiis shown in Figure 1-3(c).
Since the Gaussian function decays exponentially fastindime and frequency, the leakage
between buckets in this filter is negligible and can be igdo8milarly, the filter is concen-
trated in time and hence uses only a small number of time smnphe resulting hash function
of such filter can be written @5f) = [f/(n/B)]. Gaussian is only one example of such func-
tions. One can potentially use a Dolph-Chebyshev or a Kédsssel function as we describe
in more detail in Chapter 2.

3The sinc function is defined asinc(z) = sin(z)/z.
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Figure 1-3:Filters used for Frequency Bucketizationshown in the time (upper row) and the
frequency (lower row) domain.

(@ (b) | © )

Figure 1-4:Fourier Projection Filters: The top row of figures shows the sampled lines of the
time signal and the bottom row of figures shows how the specisiprojected. Frequencies of the
same color are projected onto the same point. (a) row proje¢t) column projection (c) diagonal
projection (d) line with slope = 2.

¢ Aliasing Filter: We presented this filter in the previous section. It is singpdpike-train of pe-
riod p in time domain since it sub-samples the time domain signal factor ofp as shown in
Figure 1-3(d). It is also a spike-train in the frequency domsance it sums up frequency coef-
ficients that are equally spaced hyp. The aliasing filter is ideal both in time and in frequency
since it only uses3 time samples and has zero leakage between buckets. Urdtatynwve
will later show that the aliasing filter does not lend itselfpiowerful randomization techniques
and as a result, can only be shown to work for average casesignals as opposed to worst
case.
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e Fourier Projection Filter: This filter is a generalization of the aliasing filter to higldemen-
sions. It is a direct result of thieourier Slice Projection Theoremvhich states that taking the
Fourier transform of samples along a slice (e.g. a 1D lineDntitne signal or a 2D plane
in a 3D signal) results in the orthogonal projection of thegfrency spectrum onto the corre-
sponding slice in the Fourier domain. For example, if we damprow in a 2D time domain
signal and then take its 1D Fourier transform, each outpurt j@d the Fourier transform will
be the sum of the coefficients along one column as shown i€ it (a). Alternatively, if we
sample a column, each output point will be the sum of the aoeiffis along one row as shown
in Figure 1-4(b). This also holds for any discrete line assshn Figure 1-4(c,d). Thus, if we
sample a line with slope equal tar 2, we get a projection in the frequency domain along lines
with slopes equal te-1 or —1/2. Note that discrete lines wrap around and hence can generate
non-uniform sampling as shown in Figure 1-4(d).

2. Frequency Estimation Techniques:

Recall that the goal of the frequency estimation step is toprgenthe positiong and values
x(f) of the non-zero frequency coefficients that have been hasheon-empty buckets. In what
follows, we will present the techniques used by the Sparse&olransform algorithms to perform
frequency estimation.

e Time-Shift/Phase-Rotation Approach:In this approach, which we have previously described
in Section 1.1.2, we repeat the bucketization after slyftire time signak by a circular shift
of  samples. For buckets with a single isolated non-zero frecyueoefficient, this results in a
phase rotatioml\¢ of the complex value of the coefficienk¢ = 27f7/n which we can use to
compute the frequency positigh Since the frequency is isolated, its value can be immdgliate
computed from the value of the bucket as described in theqursgection. This is an extremely
efficient approach since it requires constéxit ) time to estimate each non-zero frequency. For
noisy signals, we repeat this process for multiple diffetene shifts to average the noise. The
details of how we average the noise to ensure robust recoaarpe found in Chaptear 4.

e \Voting Approach: This is a non-iterative streaming approach where we repeabticketi-
zation few times while changing the hashing function. Faheaucketization, the non-empty
buckets vote for all the frequency coefficients that hashtimbse buckets. Non-zero frequency
coefficients will get a vote from every bucketization witlghiprobability. On the other hand,
zero and negligible frequencies are unlikely to get mangwsadtence, after repeating the buck-
etization and this voting procedure a few times, threon-zero frequency coefficients will have
the largest number of votes and can be identified. In Chaptee 8yill show that this approach
is more resilient to signal noise. However, this comes atcths of increased runtime which

we prove to be)(log n/nk log n).

3. Collision Resolution Techniques:

Collision resolution is achieved by repeating the buckétmain a manner that changes the way
frequency coefficients hash into buckets so that the sanféaeets do not continue to collide.
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We can randomize the hashing function if we can perform agangermutation of the posi-
tions of the coefficients i before repeating the bucketization. This can be achieveddryang-
ing the indices of the input time signaland rescaling it in the following mannér:

x'(t) =x(ot mod n) - e I3 BUn (1.5)

whereo is a random integer invertible modutoand; is a random integer. This results in a random
linear mapping of the positions of the frequency coeffi@efit—+ o~ 'f + 3 mod n. The proof

of this can be found in Chapter 2. While this randomization isry ypowerful collision resolution
technique, it only works with the flat window filter and does maork with aliasing filters as
we will show in Chapter 3. To resolve collisions using aligsfiiters, we need to use co-prime
subsampling.e. subsample the signal using different co-prime subsampétes as explained in
the previous section.

1.1.4 Algorithmic Results

In this section, we will present the theoretical resultshef Sparse Fourier Transform algorithms
that we developed. All the algorithms follow the framewo#sdribed in Section 1.1.2. However,
they use different techniques from Section 1.1.3 and asudt @shieve different runtime and sam-
pling complexities as well as different guarantees. Mogheftheoretical algorithms presented in
this thesis are randomized and succeed with a large constadbility. Table 1.2 summarizes the
theoretical Sparse Fourier Transform algorithms preskintéhis thesis along with their complex-

ity results, guarantees and techniques used.

1.2 Applications of the Sparse Fourier Transform

The second half of this dissertation focuses on developafiyvare and hardware systems that
harness the Sparse Fourier Transform to solve practicblents. The thesis presents the design
and implementation of six new systems that solve challengéise areas of wireless networks,
mobile systems, computer graphics, medical imaging, l@oustry, and digital circuits. All six
systems are prototyped and evaluated in accordance witahdards of each application’s field.

Adapting the Sparse Fourier transform to a particular appbn requires a careful design
and deep knowledge of the application domain. The Sparsedfdransform is a framework of
algorithms and techniques for analyzing sparse signals.nbt a single algorithm that can be
plugged directly into an application. To apply it to a prahleone has to deeply understand the
structure of the sparsity in the application of interest] anstomize the framework to the observed
sparsity. More generally, real applications add new caird that are application-dependent, and
can deviate from our mathematical abstraction. Below weligighsome of the common themes
that arise in mapping the Sparse Fourier Transform to maldystems.

“Note that only time samples that will be used by the buckgtindilters need to be computed.
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Bucketization

. Runtime / Sampling Sparsity Model . & Estimation
Chapter| Algorithm Complexity Range & Guarantee Analysis Techniques
e Flat Window
SFT 1.0 O(log nv/nklogn) O(n/logn) Approximate Worst Case
(oo /¥2) e \oting
3
e Flat Window
SFT2.0 | O(logn</nk?logn) O(n/+/Togn) Approximate Worst Case & Aliasing
(Heuristic) e \oting
e Flat Window
SFT 3.0 O(klogn) O(n) Exact Worst Case
(Time Optimal) | e Phase Rotation
¢ Flat Window
4 SFT4.0 | O(klognlog(n/k)) O(n) Approximate Worst Case
(la/ls) e Phase Rotatior
¢ Flat Window
SFT4.1 | O(klog®nlog(n/k)) | O(n/lognloglogn) | Approximate| Worst Case, 2D
(l2/03) ¢ Phase Rotatior
¢ Projections
SFT5.1 O(klogk) Time O(y/n) Exact Average Case, 2D & Aliasing
O(k) Samples (Optimal) e Phase Rotatior
5
¢ Projections
SFT 6.0 O(klog® n) Time O(v/n) Approximate | Average Case, 20

O(klog n) Samples

(€2/12)

(Sample Optimal)

e Phase Rotatior

Table 1.2:Theoretical Sparse Fourier Transform Algorithms

) The sampling complexity of algorithms SFT 1.0-4.1 is the sasitheir runtime complexity.
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e Structure of Sparsity: In most applications, the occupied frequency coefficiergsnat ran-
domly distributed; they follow a specific structure. For exde, as mentioned earlier, in wire-
less communication, the occupied frequencies in the vasedpectrum are clustered. In com-
putational photography, the occupied frequencies are i@y to be present in part of the
Fourier spectrum. On the other hand, in an application likSG&he occupied coefficient can
be anywhere. Understanding the structure of sparsity ih epplication allows us to design a
system that leverages it to achieve the best performanos.gai

e Level of Sparsity: A main difference between theory and practice is that thesgpBourier
Transform algorithms operate in the discrete domain. Ihaed natural signals, however, the
frequency coefficients do not necessarily lie on discrei goints. Simply rounding off the
locations of the coefficients to the nearest grid points caate bad artifacts which significantly
reduce the sparsity of the signal and damage the qualityeafetbults. This problem occurs in
application like medical imaging and light-field photogngpHence, we have to design systems
that can sparsify the signals and recover their originaissgyan the continuous domain in order
to address the mismatch between the theoretical SparseeFdtansform framework and the
scenarios in which it is applied.

e System RequirementsDifferent applications have different goals. For examptemedical
imaging, the acquisition cost is high since it requires thggmt to spend more time in the
MRI machine while processing the captured data afterwardstia problem. Hence, the goal
would be to minimize the number of input samples that neeatodiected even if it requires
additional processing time. On the other hand, in appbeatiike GPS, collecting the samples
is very cheap. However, processing them consumes a lot aéipéience, the goal would be to
minimize computational load even if all the input samplesused. Finally, in applications like
spectrum acquisition and NMR spectroscopy, the goal woaltbbminimize both the runtime
and the sampling. Hence, understanding the system is edgentdapting the Sparse Fourier
Transform techniques to satisfy the requirements of eaplicapion.

e System Architecture: In some applications, the applicability of the Sparse FruFransform
to a system architecture might not even be apparent. Forgeathe Fourier transform of the
GPS signal is not sparse and hence applying the Sparse Foraresform directly to GPS is
not feasible. However, we observed that the GPS receiveelates its signal with a special
code transmitted by the satellite, and the output of theetation is sparse because it spikes
only when the code and the signal are aligned. Hence, we lvar@p this indirect form of
sparsity to the Sparse Fourier Transform framework. We raé¢sal to ensure that the gains of
the Sparse Fourier Transform are not bottlenecked by otiraponents in the system. Thus,
careful system design is essential for propagating theses gdong the system pipeline and
improving the overall system performance.

e Signal to Noise Ratio:In practice, the gains of the Sparse Fourier Transform anstcaint
by the noise level in the system. It is essential to perform@ag and processing that would
be sufficient to bring the signal above the noise floor of trstesy. For example, although the
sparsity that appears in a GPS system is extremely hih025%), GPS signals are -30 dB
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to -20 dB below the noise floor which requires additional catapon that upper bounds the
performance gains. Thus, understanding the noise levest@macture is essential in designing
any system that uses the Sparse Fourier Transform.

The following subsections summarize the developed sysiteths thesis and how they benefit
from the Sparse Fourier Transform.

1.2.1 Spectrum Sensing and Decoding

The ever-increasing demand for wireless connectivity éasd a spectrum shortage which prompted
the FCC to release multiple new bands for dynamic spectrunmghd his is part of a bigger vision

to dynamically share much of the currently under-utilizpdarum, creating GHz-wide spectrum
superhighways that can be shared by different types of @gseservices. However, a major tech-
nical obstacle precluding this vision is the need for reses\that can capture and sense GHz of
spectrum in real-time in order to quickly identify unoccegbibands. Such receivers consume a lot
of power because they need to sample the wireless signagjaSample/s.

To overcome this challenge, we leverage the fact that thelegs spectrum is sparsely uti-
lized and use the Sparse Fourier Transform to build a rec#ma can capture and recover GHz
of spectrum in real-time, while sampling only at MegaSarpl&/e use the aliasing filters and
phase rotation techniques described in Section 1.1.3 td the entire receiver using only cheap,
low power hardware similar to what is used today by WiFi andELlifi every mobile phone. We
implement our design using three software radios, each lgagmgt 50 MegaSample/s, and pro-
duce a device that captures 0.9 GHze;, 6x larger digital bandwidth than the three software
radios combined. The details of the system design, impléstien and evaluation can be found in
Chapter 7.

1.2.2 GPS Receivers

GPS is one of the most widely used wireless systems. In oadealtulate its position, a GPS
receiver has to lock on the satellite signals by aligning rdeeived signal with each satellite’s
code. This process requires heavy computation, which ecoesioth time and power. As a result,
running GPS on a phone can quickly drain the battery.

We introduced a new GPS receiver that minimizes the reqaatputation to lock on the satel-
lite’s signal hence reducing localization delay and powmrsumption. Specifically, We observed
that GPS synchronization can be reduced into a sparse catigguproblem by leveraging the fact
that only the correct alignment between the received GR&kand the satellite code causes their
correlation to spike. We built on this insight to develop aSGRceiver that exploits the Sparse
Fourier Transform to quickly lock on the satellite signatladentify its location. We prototyped
this design using software radios. Our empirical resultk weal satellite signals demonstrate that
the new GPS receiver reduces the computational overhe@d by 6 x, which translates into sig-
nificant reduction in localization delay and power consuorptChapter 8 presents the analysis
and evaluation of the design in detail.
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1.2.3 Light Field Photography

Light field photography is an active area in graphics wher® ar2ay of cameras or lenslets is used
to capture the 4D light field of a scefidhis enables a user to extract the 3D depth, refocus the
scene to any plane, and change the angle from which he viensctne. This is essential for VR
(Virtual Reality) systems as well as post processing of irsaged videos. Capturing light fields,
however, is costly since it requires many cameras or lenstesample the scene from different
viewpoints.

Thus, our goal is to reduce the cost of light field capture bggisnly few of the cameras in
the 2D array and reconstructing the images from the missamgecas . To do this, we leverage
the fact that the 4D Fourier transform of a light field is spaamd we use the Sparse Fourier
Transform to sub-sample the input and reduce the numbernéies. Once we have computed
the Fourier transform, we can invert it back to recover thages from the missing cameras which
were not sampled and hence recover the full 2D array. Howasexplained earlier, natural signals
like light fields are not very sparse in the discrete domamaddress this issue, we developed a
light field reconstruction system that optimizes for sgguisi the continuous Fourier domain. This
improves the quality of reconstruction while reducing tegquired number of cameras By to
10x. The light field reconstruction algorithm along with the@astruction results can be found in
Chapter 9.

1.2.4 Magnetic Resonance Spectroscopy (MRS)

One of the next frontiers in MRI is Magnetic Resonance Specti@s(MRS). MRS enables zoom-
ing in and detecting the biochemical content of each voxéhénbrain, which can be used to dis-
cover disease biomarkers that allow early detection of@aratism, and Alzheimer. MRS tests,
however, take prohibitively long time, requiring the pati¢o stay in the MRI machine for more
than two hours. MRS images also suffer from a lot of clutter aridacts that can mask some
disease biomarkers. These two challenges have been a ragjer lagainst adopting these tests in
clinical diagnosis. To overcome this barrier, We demonsti#hat processing MRS data using the
Sparse Fourier Transform enhances image quality by suppgeartifacts and reduces the time the
patient has to spend in the machine by @.g. from 2 hrs to 40 mins). The details of our MRS
algorithm, experiments and results can be found in Chaprer 10

1.2.5 Nuclear Magnetic Resonance (NMR)

NMR is a technique that provides the detailed structuraperties of chemical compounds, pro-
viding the 3D structure of complex proteins and nucleic aditbwever, collecting NMR measure-
ments is a very time consuming and costly process that carirak several days up to weeks. This
prevents researchers from running high-dimensional NMpeerents which are needed for ana-
lyzing more complex protein structures. NMR uses spectralyais to find the resonance frequen-
cies that correspond to the coupling between different atdMiVIR spectra are sparse. Hence, us-

5 The four dimensions of a light field correspond to the 2D ixaleach image captured by a camera in the 2D
camera array.
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ing the Sparse Fourier Transform, we show how to generatidthi® spectra by sub-sampling the
NMR measurements. We customized the Sparse Fourier Tram$éo multi-dimensional NMR
and showed that it can reduce the time of an NMR experimen®ly Chapter 11 describes the
Sparse Fourier Transform techniques used for processindligiR experiments along with our
recovery results.

1.2.6 The Sparse Fourier Transform Chip

Traditionally, hardware implementations of FFT have baemtéd in size to few thousands of
points. This is because large FFTs require a huge I/O barnlkwidnsume a lot of power, and
occupy a large silicon area. The Sparse Fourier Transfororally addresses these issues due
to its low computational and memory cost, enabling veryddrgurier transforms. We built the
largest Fourier transform VLSI chip to date with nearly alimil point Fourier transform while
consumingtOx less power than prior FFT VLSI implementations. The har@éwachitecture and
benchmarking of the fabricated chip can be found in Appe@&lix

1.3 Thesis Roadmap

This thesis is divided into two parts. Part | describes treotatical foundations of the Sparse
Fourier Transform. It presents the Sparse Fourier Tranms&dgorithms in detail and provides the
analysis and proofs of the guarantees of these algorithnapt€in22 presents the notation and basic
definitions that will be used in this part of the thesis. Chegpeand 4 focus on reducing the runtime
complexity of the Sparse Fourier Transform algorithms wit@hapter 5 focuses on optimizing
the sample complexity. Finally, in Chapier 6, we present migakesimulations to evaluate the
performance of the Sparse Fourier Transform.

Part 1l describes the applications and systems designed tise Sparse Fourier Transform.
Chapter 7 describes the design and implementation of a wiegeeiver that can capture GHz of
spectrum in realtime. Chapter 8 presents a GPS receivemdeglglower computational overhead.
Chapter 9 describes a light field photography reconstruaigarithm that achieves high quality
image recovery. Chapter 10 shows how the Sparse Fourierféransan be used to reduce the
time a patient spends in an MRI machine and generate cleaegyesn Chapter 11 presents the
application of the Sparse Fourier Transform to Nuclear MaigrResonance in biochemistry.

Finally, in Chapter 12, we conclude and discuss the futuré&wor

38



Part |

Theory of the Sparse Fourier Transform
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Chapter 2

Preliminaries

2.1 Notation

We usev = e~ >™/" as then-th root of unity and.’ = ¢~27/v" as the,/n-th root of unity. For any
complex number, we usep(a) € [0, 2] to denote thg@haseof a. For a complex number and a
real positive numbeb, the expression + b denotes a complex numbersuch thata — o’| < b.

For avector: € C", its support is denoted byipp(z) C [n]. We us€|z||, to denotgsupp(z)
the number of non-zero coordinatesmofits Fourier spectrum is denoted Bywith

For a vector of length, indices should be interpreted modulpsoz_; = z,_;. This allows us to
defineconvolution
(T*y)i= D vy

j€(n]
and thecoordinate-wise produdtz - y); = z;y;, SOT - y = T * .

We use[n] to denote the sefl,...,n}. All operations on indices in are taken moduto
Therefore we might refer to am-dimensional vector as having coordina{@sl,...,n — 1} or
{0,1,...,n/2,—n/2+1,...,—1} interchangeably. Whenc Z is an index into am-dimensional
vector, sometimes we us$g to denotemin,—; wmod ) |7]. Finally, we assume that is an integer
power of2.

For the case of 2D Fourier transforms which will appear in G, we assume thgtn is a
power of2. We us€lm] x [m] = [m]? to denote then x m grid {(4,7) : © € [m],j € [m]}. Fora
2D matrixz € CV™* V™ its support is denoted byipp(z) C [/n] x [v/n]. We also usd|z||, to
denotelsupp(z)|. Its 2D Fourier spectrum is denoted bywith

Ti; = L Z Z (W/)ﬂﬂmiﬂl,m
v le[v/n] me[y/n]

Finally, if y is in frequency-domain, its inverse is denotediby
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2.2 Basics

2.2.1 Window Functions
In digital signal processing [138] one defingsmdow functionsn the following manner:

Definition 2.2.1. We define e, §, w) standard window functioto be a symmetric vectdr € R"
with supp(F) C [—w/2, w/2] such thatF, = 1, F; > 0 for all i € [—en, en|, and|F;| < § for all
i ¢ [—en,en).

Claim 2.2.2. For anye and4, there exists affe, §, O(2 log(1/4))) standard window function.

Proof. This is a well known fact [1€0]. For example, for anyandd, one can obtain a standard
window by taking a Gaussian with standard deviati®df/log(1/0)/¢) and truncating it aiv =

O(%1og(1/6))). The Dolph-Chebyshev window function also has the claimegpgnty but with
minimal big-Oh constant [160] (in particular, half the ctard of the truncated Gaussian). [l

The above definition shows that a standard window functida ke a filter, allowing us to
focus on a subset of the Fourier coefficients. Ideally, h@reve would like the pass region of our
filter to be as flat as possible.

Definition 2.2.3. We define de, ¢, 9, w)AfIat window functionto be a symmetric vectar € R"
with supp(F) C [—w/2, w/2] such thatt; € [1 —§,1+d] forall i € [—¢'n,e'n] and|F;| < ¢ for
all i ¢ [—en, en].

A flat window function (like the one in Figure 2-1) can be obtd from a standard window

function by convolving it with a “box car” window function,d., an interval. Specifically, we have
the following.

Claim 2.2.4. For anye, ¢, andd with ¢ < ¢, there exists arfe, €/, 6, O(— log %)) flat window
function.

Note that in our applications we haye< 1/n°() ande = 2¢'. Thus the window lengths of
the flat window function and the standard window functiontheesame up to a constant factor.

Proof. Let f = (¢ — ¢)/2, and letF' be an(f, w) standard window function with minimal

l+ ) )
w=0(2 (ete )”) We can assume e’ > 1/(2n) (becausé—en,en] = {0} otherwise), so
log (ete)n O(log 1). Let £’ be the sum ol + 2(¢’ + f)n adjacent copies of', normalized to
Fy 1. That is, we define
(¢'+f)n
pr_ 2= Fi
so by the shift theorem, in the time domain
@+hHn
FlxF, Y .
j==(+f)n
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Figure 2-1:An Example Flat Window Function for n = 256. This is the sum oB1 adjacent
(1/22,1078,133) Dolph-Chebyshev window functions, giving(8.11,0.06,2 x 10~% 133) flat
window function (although our proof only guarantees a tees = 29 x 1078, the actual toler-
ance is better). The top row showsand G in a linear scale, and the bottom row shows the same
with a log scale.
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Since F; > 0 for |i| < fn, the normalization factop-’" _, F; is at leastl. For eachi €
[—€'n, €'n], the sum on top contains all the terms from the sum on bottdra.other2e' n terms in
the top sum have magnitude at mést(¢ +¢)n) = 6/(2(¢' + f)n), So|F’; — 1| < 2¢'n(5/(2(€ +
f)n)) < 8. For|i| > en, however,F"; < 2(¢' + f)nd/(2(€ + f)n) < 6. ThusF’ is an(e, ¢, 0, w)
flat window function, with the correab. N

2.2.2 Permutation of Spectra

Following [59], we can permute the Fourier spectrum as ¥adldy permuting the time domain:

Definition 2.2.5. Suppose ! exists mod:. We define theermutation?, , , by

(Pa,a,bx)i = xa(i—a)wgbi

We also define, ;(i) = o(i — b) mod n.

Claim 2.2.6. Py o7, ) = 5w,
Proof.
5 1 o(i—b)j
Pa,a,bxo-(lfb) 7 Z w (P bx)]
i€(n]
1 o(i—b)j obj
= —= 2 WV aw
(FEn
— Wt~ w’LO’(] a)xa(j—a)
" jemm)
— fiwaai

]

Lemma 2.2.7.1f j # 0, n is a power of two, and is a uniformly random odd number jn], then
Prioj € [-C, C]] <4C/n.

Proof. If j = m2' for some oddn, then the distribution ofj asc varies is uniform overn’2! for
all oddm’. There are thug - round C'/2'*1) < 4C /2!*! possible values if-C, C] out of n /21
such elements in the orbit, for a chance of at mid@sf n. O

Note that for simplicity, we will only analyze our algorithmhenn is a power of two. For
generaln, the analog of Lemma 2.2.7 would lose app(n) = O(loglog n) factor, wherep is
Euler’s totient function. This will correspondingly in@se the running time of the algorithm on
generaln.

Claim 2.2.6 allows us to change the set of coefficients binoed bucket by changing the
permutation; Lemma 2.2.7 bounds the probability of norezmefficients falling into the same
bucket.
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2.2.3 Subsampled FFT

Suppose we have a vectore C" and a parameteB dividing », and would like to compute
@i = »%i(n/B) forq e [B]

Claim 2.2.8. j is the B-dimensional Fourier transform of, = -7/ ' 2, 5;.

Thereforey can be computed i) (|supp(z)| + Blog B) time.

Proof.
n—1 B—-1n/B-1
A ij B i(Bj B
Tignym) = Y W M =30 37wy
=0 a=0 ;=0
B-—1 n/B—l B—-1
; B ; B A~
= > apraw ™ =3y =,
a=0 j=0 a=0

2.2.4 2D Aliasing Filter

The aliasing filter presented in Section 1.1.2. The filteragalizes t@2 dimensions as follows:
Given a 2D matrixc € CY™*V", (1,,71,) € [\/n] x [\/n], andB,, B, that divide,/n, then for
all (¢,7) € [B,] x [B.] set
yi:j = xi(\/ﬁ/B’r')"’ij(\/ﬁ/Bc)"'TC
Then, compute the 2D DFF of y. Observe thaf is a folded version of:

Big = D D Bprimpey (@) OB OB

1€[%2] me[ %2 ]
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Chapter 3

Simple and Practical Algorithm

3.1 Introduction

In this chapter, we propose a new sub-linear Sparse Fouaasform algorithm over the complex
field. The key feature of this algorithm is its simplicityethlgorithm has a simple structure, which
leads to efficient runtime with low big-Oh constant. This wassfirst algorithm to outperform FFT
in practice for a practical range of sparsity as we will shateit in Chapter 6.

3.1.1 Results

We present an algorithm which has the runtime of

0 (log ny/ nk log n)

wheren is the size of the signal antlis the number of non-zero frequency coefficients. Thus,

the algorithm is faster than FFT farup to O(n/logn). In contrast, earlier algorithms required

asymptotically smaller bounds dn This asymptotic improvement is also reflected in empirical

runtimes. For example, we show in Chapter 6 thatfer 222, this algorithm outperforms FFT for

k up to abou200, which is an order of magnitude higher than what was achibyaatior work.
The estimations provided by our algorithm satisfy the séedd . /¢» guarantee. Specifically,

let y be the minimizer of|z — y||,. For a precision parametér= 1/2°(1), and a constant > 0,

our (randomized) algorithm output$ such that:

12 = 2'I1%, < ellz — yllz/k + oll=| (3.1)

with probability1 — 1/n. The additive term that depends dappears in all past algorithms 6, 7,
57,59, 83, 116], although typically (with the exception@)]) it is eliminated by assuming that all
coordinates are integers in the rarf{gen®® ... n®M} | In this chapter, we keep the dependence
on ¢ explicit.

The /. /¢; guarantee of Equation (3.1) $¢rongerthan the/, /¢, guarantee of Equation (1..2).
In particular, the/,, /¢, guarantee with a constant approximation faegtoimplies thel, /¢, guar-
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antee with a constant approximation factdf, if one sets all but thé largest entries i’ to 0.!
Furthermore, instead of bounding only the collective ettee/., /¢, guarantee ensures that every
Fourier coefficient is well-approximated.

3.1.2 Techniques

Recall from Chapter 1 that the Sparse Fourier Transform dhgos work by binnin the Fourier
coefficients into a small number of buckets. Since the signaparse in the frequency domain,
each bucket is likef/to have only one large coefficient, which can then be locatedirfd its
position) and estimated (to find its value). For the algonitio be sublinear, the binning has to be
done in sublinear time. Binning the Fourier coefficient iselasing am-dimensional filter vector
G that is concentrated both in time and frequeney, G is zero except at a smallimberof time
coordinates, and its Fourier transforehis negligible except at a smdtiaction (aboutl /%) of the
frequency coordinates (the “pass” region).

Prior work, uses different types of filters. Depending onc¢heice of the filterG, past algo-
rithms can be classified as: iteration-based or interpmiatiased.

Iteration-based algorithms use a filter that has a significaass outside its pass region [57,
59, 116]. For example, the papers [57, 59] &&lb the rectangular filter which was shown in Fig-
ure 1-3(a), in which cas€ is the Dirichlet kernél, whose tail decays in an inverse linear fashion.
Since the tail decays slowly, the Fourier coefficients bihtwea particular bucket “leak” into other
buckets. On the other hand, the paper [116] estimates th@lkion in time domain via random
sampling, which also leads to a large estimation error. Giace these errors and obtain thé/,
guarantee, these algorithms have to perform multipletiterg, where each iteration estimates the
largest Fourier coefficient (the one least impacted by lgakand subtracts its contribution to the
time signal. The iterative update of the time signal causkesge increase in runtime. The algo-
rithms in 57, 116] perform this update by going througltk) iterations each of which updates
at leastO(k) time samples, resulting in af(%?) term in the runtime. The algorithm [59], intro-
duced a “bulk sampling” algorithm that amortizes this pscbut it requires solving instances of
a non-uniform Fourier transform, which is expensive in pcac

Interpolation-based algorithms are less common and ldrieethe design in [88]. This ap-
proach uses the aliasing filter presented in Chapter 1, whiahdakage-free filter that allows [88]
to avoid the need for iteration. Recall that in this case, ther fz hasG; = 1iff i mod n/p =0
and G; = 0 otherwise. The Fourier transform of this filter is a “spikait?’ with period p and
hence this filter does not leak; it is equallton 1/p fraction of coordinates and is zero elsewhere.
Unfortunately, however, such a filter requires thatlivides » and the algorithm in [&8] needs
many different values of. Since in general one cannot assume that divisible by all numbers
p, the algorithm treats the signal as a continuous functiahraerpolatest at the required points.
Interpolation introduces additional complexity and irases the exponents in the runtime.

1This fact was implicit in [35]. For an explicit statement goof see [58], remarks after Theorem 2.

2Throughout this thesis, we will use the terms “Binning” amiitketization” interchangeably.

30ne can randomize the positions of the frequencies by sagipiie signal in time domain appropriately as we
have shown in Section 2.2.2.

4The Dirichlet kernel is the discrete version of the sinc tiort
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Our Approach

The key feature of our algorithm is the use of a different tgpdilter. In the simplest case, we
use a filter obtained by convolving a Gaussian function wibdoeg-car functiorf. Because of this
new filter, our algorithm does not need to either iterate terpolate. Specifically, the frequency
response of our filtet? is nearly flat inside the pass region and haggponentiatail outside it.
This means that leakage from frequencies in other bucketsgbkgible, and hence, our algorithm
need not iterate. Also, filtering can be performed using ¥i&tiag input samples;, and hence our
algorithm need not interpolate the signal at new points.iding both iteration and interpolation
is the key feature that makes this algorithm efficient.

Further, once a large coefficient is isolated in a bucket,rerezls to identify its frequency. In
contrast to past work which typically uses binary searchtrtask, we adopt an idea from [1.45]
and tailor it to our problem. Specifically, we simply seldw set of “large” bins which are likely
to contain large coefficients, and directly estimate aljjfrencies in those bins. To balance the cost
of the bin selection and estimation steps, we make the nuofdans somewhat larger than the
typical value ofO (k). Specifically, we us& ~ v/nk, which leads to the stated runtirfie.

3.2 Algorithm

We refer to our algorithm as SFT 1.0 and it is shown in AlgoniB.2.1.. A key element of this
algorithm is thenner loop which finds and estimates each “large” coefficient with ¢ansprob-
ability. In Sectiorn 3.2.1 we describe the inner loop, andewct®n 3.2.2 we show how to use it to
construct the full algorithm.

3.2.1 Inner Loop

Let B be a parameter that divides to be determined later. L&t be a(1/B,1/(2B),0, w) flat
window function described in Section 2.2.1 for somandw = O(Blog %). We will haved ~
1/n¢, so one can think of it as negligibly small.

There are two versions of the inner lodpcationloops andestimationloops. Location loops,
described as the proceduredtATIONINNERLOOP in Algorithm 3.2.1., are given a parameter
d, and output a sef C [n]| of dkn/B coordinates that contains each large coefficient with
“good” probability. Estimation loops, described as thegedure EETIMATIONINNERL OOPIN Al-
gorithm 3.2.1, are given a sétC [n] and estimaté; such that each coordinate is estimated well
with “good” probability.

By Claim 2.2.8, we can computein O(w + Blog B) = O(Blog %) time. Location loops
thus takeO(B log s + dkn/B) time and estimation loops take(5 log % + |I]) time. Figure: 3-1

5A more efficient filter can be obtained by replacing the Garsginction with a Dolph-Chebyshev function. (See
Figure 2-1 for an illustration.)

6 Although it is plausible that one could combine our filterghthe binary search technique of [59] and achieve an
algorithm with aO (% log® n) runtime, our preliminary analysis indicates that the réxsglalgorithm would be slower.
Intuitively, observe that fon, = 222 andk = 2'', the values of/nk = 2165 ~ 92681 andk log, n = 45056 are quite
close to each other.
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procedure LOCATIONINNERLOOR(z, k, B, d)
Chooser, 7 andb uniformly at random fromn] such that is odd.
Computez; = ;,/ for j € [B], wherey = G - (P, .,2) ©>FFTofz = Zj[iém_l Yi+jB
J + indices ofdk largest coefficients ia.
I ={i € [n]|h, (i) € J} whereh, ;(i) = roundo(i — b)B/n) > hep : [n] — [B]
return [
procedure ESTIMATIONINNERLOOR(z, B, I)
Chooser, 7 andb uniformly at random fromn] such that is odd.
Computez; = ¥y, for j € [B], wherey = G - (Py ;)
T+ 0
for i € I do .
/I\i = /Z\hmb(i)w_TUi/Go(,,b(i) Whereog,b(z') = O’(i — b) — h07b<i)(n/B)
> osp: [n] = [—n/(2B),n/(2B)]
return z’
procedure NONITERATIVESPARSEFFT(z, k, B, L, d)
7+ 0
for re {1,---,L} do
I, < LOCATIONINNERLOOP(z, k, B, d).
I=LU---UI,
for i € I do
si = [{rli € I}]
I'={iells; > L/2}
for re {1,---,L} do
z], < ESTIMATIONINNERLOOR(z, B, I')
for i € I’ do
z] = mediar{{z]})
return z’

3.2.1: SFT 1.0: Non-Iterative Sparse Fourier Transformkfer o(n/log n)

illustrates the inner loop.
For estimation loops, we get the following guarantee:

Lemma 3.2.1.Let S be the support of the largest coefficients ofi, and z_g contain the rest.
Then for any < 1,

A €. . k
o[l > Lla-slg + 381012 < 0 (55 ).

Proof. The proof can be found in Appenciix A.1. n

—~

Furthermore, sinceG,_ ()| € [1 — 0,1+ 6], |2, ,5)| is @ good estimate fdf;|—the division
is mainly useful for fixing the phase. Therefore in locatioops, we get the following guarantee:
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Figure 3-1:Example Inner Loop of the Algorithm on Sparse Input. This run has parameters
n = 256, k = 4, G being the(0.11,0.06,2 x 107, 133) flat window function in Figure 2-1, and

selecting the tod of B = 16 samples. In part (a), the algorithm begins with time domaireas

to P, ,,x given by (P, ,,z); = xg(i_ﬂw”bi, which permutes the spectrum ofby permuting

the samples in the time domain. In part (b), the algorithm pates the time domain signal =

G - P, px. The spectrum of (pictured) is large around the large coordinates’pf ,z. The
algorithm then compute’, which is the rateB subsampling ofy as pictured in part (c). During
estimation loops, the algorithm estimatgsbased on the value of the nearest coordinaté,in
namely 2, , ;). During location loops (part (d)), the algorithm choosgsthe top dk (here,4)
coordinates o, and selects the elements|ef that are closest to those coordinates (the shaded
region of the picture). It outputs the sebf preimages of those elements. In this example, the two
coordinates on the left landed too close in the permutataifarm a “hash collision”. As a result,
the algorithm misses the second from the left coordinatésinutput. Our guarantee is that each
large coordinate has a low probability of being missed if elest the topO (k) samples.
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Lemma 3.2.2.DefineE = \/§||§:_5||§ + 302||2||3 to be the error tolerated in Lemma 3.2.1. Then
foranyi € [n] with |2;| > 4F,

Pr[igé[]gO(jB—l—:d)

Proof. The proof can be found in Appenclix A.2 m

3.2.2 Non-lterative Sparse Fourier Transform

Our SFT 1.0 algorithm shown in Algorithm 3.22.1 is parametedibye andd. It runsL = O(log n)

iterations of the inner loop, with parameté#s= O( Elog”(’jl/d)) "andd = O(1/¢) as well as).

Lemma 3.2.3. The algorithm runs in time (/%62 1og 7).

Proof. To analyze this algorithm, note that
oL
|I'| 5 <> s =>_|I| = Ldkn/B

or |I'| < 2dkn/B. Therefore the running time of both the location and estiomainner loops
is O(Blog % + dkn/B). Computingl’ and computing the medians both take linear time, namely

O(Ldkn/B). Thus the total running time i€ (LB log %+ Ldkn/ B). Plugging inB = O( %)

andd = O(1/e), this running time is0 (/") 1og ). We requireB = Q(k/¢), however; for
k > en/log(n/d), this would cause the run time to be larger. But in this caseptiedicted run
time isQ(n log n) already, so the standard FFT is faster and we can fall back on i O]

Theorem 3.2.4.Running the algorithm with parameters) < 1 givesz’ satisfying

A

A 6 A A
1" = 2115 < Tlla-sls + 5" [12]1

with probability 1 — 1/ and running timeO (/&%) 1og 7).

Proof. Define

6 A A
B = \[lasl3 + 3820313
Lemma. 3.2.2 says that in each location iteratiofor anys with |z;| > 4E,

Prli ¢ I"] < O(El; + Eld) <1/4.

"Note thatB is chosen in order to minimize the running time. For the paepof correctness, it suffices that
B > ck /e for some constant.
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ThusE[s;] > 3L/4, and each iteration is an independent trial, so by a Chermeffitd the chance
thats; < L/2 is at mostl/2%") < 1/n3, Therefore by a union bound, with probability at least
1—1/n? i € I'for all i with |2;| > 4F.

Next, Lemma 3.2.1 says that for each estimation iteratiand indexi,

k
Pr]|z] — ;| > F] < O(—) < 1/4.
eB
Therefore, with probabilitg — 2= > 1 —1/n3, |27 — ;| < E in at leasRL/3 of the iterations.
Since red(z)) is the median of the re@), there must exist twe with |27 — Z;| < E but one
realz) above redli/) and one below. Hence one of theskas|real i/ — 7;)| < |[real ] — 7;)| <
E, and similarly for the imaginary axis. Then
|2/ — 2| < V2max(|realz] — 2,)|, limag(i! — 2;)]) < V2E.
By a union bound ovef’, with probability at least — 1/n? we have|i! — 3;| < v/2E for all
i € I'. Since alli ¢ I’ have! = 0 and|Z;| < 4F with probability1 — 1/n?, with total probability
1 —2/n* we have

16
I = 31 < 165° = 2= la-s} + 4867211

Rescaling: andJ gives our theorem. ]

3.2.3 Extension

In this section, we present an extension of the SFT 1.0 @lgonvhich adds a heuristic to improve
the runtime. We refer to this new algorithm as SFT 2.0 andsh@wvn in Algorithm 3.2.2. The idea
of the heuristic is to apply the aliasing filter to restrice locations of the large coefficients. The
algorithm is parameterized hy/ that dividesn. It performs the aliasing filter as a preprocessing
step to SFT 1.0 and uses its output to restrict the frequartatibns in the sef. outputted by the
location loops as shown in Algorithm 3.2.2.

Observe tha); = 2;134 Eagiw0FM) Thus,

Elp]= Y Il
i=j mod M

This means that the filter is very efficient, in that it has nakkge at all. Also, it is simple to
compute. Unfortunately, it cannot be “randomized” usifg. ,: after permuting by andb, any
two colliding elementg andj’ (i.e., such thaj = ;' mod M) continue to collide. Nevertheless,
if 2; is large, thery mod M is likely to lie in T—at least heuristically on random input.

SFT 2.0 assumes that all “large” coefficieptsave; mod M in T. Thatis, we restrict our sets
I, to contain only coordinateswith i mod M € T.We expect thall,| ~ 2£ dkn/B rather than
the previousikn / B. This means that our heuristic will improve the runtime & thner loops from
O(Blog(n/é) + dkn/B) to O(Blog(n/d) + & dkn/B + M + dk), at the cost ofO(M log M)
preprocessing.
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procedure NONITERATIVESPARSEFFT2(z, k, B, L, d, M)
'+ 0
Chooser € [n] uniformly at random
Yi = Ti(n/M)+r
Computey
T <+ indices of the2k largest elements af > T C [M]
forre {1,---,L} do
J <+~ LOCATIONINNERLOOR(z, k, B, d).
I, ={i€eJ)ji mod M e T}
I=LU---U
for i € I do
si = {rli € I}
I'={iells; > L/2}
for re {1,---,L} do
z], < ESTIMATIONINNERLOORP(z, B, I')
for i € I' do
z; = mediar{{z})
return 7’

3.2.2: SFT 2.0: Non-lterative Sparse Fourier Transfornmwéuristic fork = o(n/+/log n)

Note that on worst case input, SFT 2.0 may give incorrectwutpth high probability. For
example, ifz; = 1 whenq is a multiple ofn/M and0 otherwise, thery = 0 with probability
1 — M /n and the algorithm will outpud oversupp(z). However, in practice the algorithm works
for "sufficiently random'z.

Claim 3.2.5. As a heuristic approximation, SFT 2.0 runsa@{(k?n log(n/d)/€)*/?log n) as long
ask < e*nlog(n/é).

Justification.First we will show that the heuristic improves the inner laoymning time to
O(Blog(n/8) + £ dkn/B + M + dk), then optimize the parametel$ and 5.

Heuristically, one would expect each of tiieto be a'—AT) factor smaller than if we did not
require the elements to lie il modulo M. Hence, we expect each of theand I’ to have size
'—A?dkn/B = O(£dkn/B). Thenin each location loop, rather than spendiigkn / B) time to list
our output, we spend(+- dkn/B) time—plus the time required to figure out where to startrigti
coordinates from each of th# chosen elements$ of z. We do this by sorting/ and{oi | i € T'}
(mod M), then scanning through the elements. It tak¥d/ + dk) time to sortO(dk) elements
in [M], so the total runtime of each location loop% B log(n/8) + £ dkn/B + M + dk). The
estimation loops are even faster, since they benefit fidjbeing smaller but avoid th&/ + dk
penalty.

The full algorithm doesO (M log M) preprocessing and runs the inner lobp= O(logn)
times withd = O(1/¢). Therefore, given parameteBsand M, the algorithm take® (M log M +

54



Blog % log n + ﬁf—g log n + M logn + flog n) time. Optimizing overB, we take

n k
O(M logn + k”ﬁe log(n/d)logn + - log n)
time. Then, optimizing ove#/, this becomes
k
O((k*nlog(n/d)/e)*logn + ~ logn)
€

time. If £ < enlog(n/d), the first term dominates.
Note that this is ar(1%)1/6 factor smaller than the running time of SFT 1.0.
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Chapter 4

Optimizing Runtime Complexity

4.1 Introduction

The algorithm presented in Chapter 3 was the first algorithmutperform FFT in practice for
reasonably sparse signals. However, it has a runtim@ (g n/nk Tog n) which is polynomial
in n and only outperforms FFT fdr smaller thar©(n/log n).

4.1.1 Results

In this chapter, we address this limitation by presenting mew algorithms for the sparse Fourier
transform. We show:

e An O(klog n)-time algorithm for the exactly-sparse case, and
e An O(klognlog(n/k))-time algorithm for the general case.

The key property of both algorithms is their ability to acle(n log n) time, and thus improve
over the FFT, fomany £ = o(n). These algorithms are the first known algorithms that sattgs
property. Moreover, if one assumes that FFT is optimal anettédehe DFT cannot be computed
in less thanO(nlog n) time, the algorithm for the exactly-sparse case igptimat as long as
k= n2M, Under the same assumption, the result for the general sasenost onéog log n
factor away from the optimal runtime for the case of “largpassityk = n/ log®® n.

For the general case, given a sigmathe algorithm computeslasparse approximation’ of
its Fourier transformg that satisfies the following, /¢ guarantee

|7 =% < € min &y, (4.)
-sparsey
where(C' is some approximation factor and the minimization is dwaparse signals.
Furthermore, our algorithm for the exactly sparse case i® imple and has low big-Oh
constants. In particular, our implementation of a varidrthe algorithm, described in Chapier 6,
is faster than FFTW, a highly efficient implementation of E€T, forn = 222 andk < 2'7 [71].

10ne also needs to assume thatividesn. See appendix B for more details.
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In contrast, for the same signal size, the algorithms in Ghdtvere faster than FFTW only for
k < 2000.2

We complement our algorithmic results by showing that agp@ihm that works for the gen-
eral case must use at le&xtk log(n/k)/ loglog n) samples fromx. The proof of this lower bound
can be found in Appendix C. The lower bound uses techniques [td6], which shows a lower
bound ofQ)(k log(n/k)) for the number ofarbitrary linear measurements needed to compute the
k-sparse approximation of arrdimensional vectat. In comparison tc [146], our bound is slightly
worse but it holds even fardaptivesampling, where the algorithm selects the samples based on
the values of the previously sampled coordinithiate that our algorithms amon-adaptiveand
thus limited by the more stringent lower bound of [146].

4.1.2 Techniques

Recall from Chapter 3 that we can use the flat window filters caliplith a random permutation of
the spectrum to bin/bucketize the Fourier coefficients ensonall number of buckets. We can then
use that to estimate the positions and values of the larqadrecy coefficients that were isolated in
their own bucket. Here, we use the same filters introduced ap 3. In this case, a filt€¥ have
the property that the value o is “large” over a constant fraction of the pass region, refito
as the “super-pass” region. We say that a coefficient isdtsaol’ if it falls into a filter’'s super-pass
region and no other coefficient falls into filter’'s pass regi8ince the super-pass region of our
filters is a constant fraction of the pass region, the prdibabif isolating a coefficient is constant.

However, the main difference in this chapter, that allowsuschieve the stated running times,
is a fast method for locating and estimating isolated cdefiis. Further, our algorithm is iterative,
so we also provide a fast method for updating the signal sbideatified coefficients are not
considered in future iterations. Below, we describe thestods in more detail.

New Techniques: Location and Estimation

Our location and estimation methods depends on whether médthe exactly sparse case or the
general case. In the exactly sparse case, we show how taéstine position of an isolated Fourier
coefficient using only two samples of the filtered signal. &fpeally, we show that the phase dif-
ference between the two samples is linear in the index ofdké#icient, and hence we can recover
the index by estimating the phases. This approach is irgpiyehe frequency offset estimation
in orthogonal frequency division multiplexing (OFDM), vehi is the modulation method used in
modern wireless technologies (see [77], Chapter 2).

2Note that both numbers (< 2'7 andk < 2000) are for the exactly k-sparse case. The algorithm in Ch&xen
deal with the general case, but the empirical runtimes ayledhi

3Note that if we allowarbitrary adaptive linear measurements of a veé@pthen itsk-sparse approximation can
be computed using onl@ (k loglog(n/k)) samples [86]. Therefore, our lower bound holds only wheeentieasure-
ments, although adaptive, are limited to those induced &¥ydurier matrix. This is the case when we want to compute
a sparse approximation ofrom samples of:.
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In order to design an algorittfior the general case, we employ a different approach. Specifi
cally, we can use two samples to estimate (with constanigiibty) individual bits of the index of
an isolated coefficient. Similar approaches have been gmeglm prior work. However, in those
papers, the index was recovered bit by bit, and one ne@ded log n) samples per bit to recover
all bits correctly with constant probability. In contrast, veeover the index onbklock of bitsat a
time, where each block consists Of log log ) bits. This approach is inspired by the fast sparse
recovery algorithm of [€2]. Applying this idea in our conteRowever, requires new techniques.
The reason is that, unlike in [62], we do not have the freedbosmg arbitrary “linear measure-
ments” of the vectof, and we can only use the measurements induced by the Faanefdrmn:
As a result, the extension from “bit recovery” to “block reeoy” is the most technically involved
part of the algorithm. Section 4.3.1 contains further itndui on this part.

New Techniques: Updating the Signal

The aforementioned techniques recover the position anbllbe of any isolated coefficient. How-
ever, during each filtering step, each coefficient beconwated only with constant probability.
Therefore, the filtering process needs to be repeated taestisat each coefficient is correctly
identified. In Chapter 3, the algorithm simply performs theefihg O(log n) times and uses the
median estimator to identify each coefficient with high @bitity. This, however, would lead to a
running time ofO(k log® n) in the k-sparse case, since each filtering step takeg n time.

One could reduce the filtering time by subtracting the idedticoefficients from the signal.
In this way, the number of non-zero coefficients would be cediby a constant factor after each
iteration, so the cost of the first iteration would domindte total running time. Unfortunately,
subtracting the recovered coefficients from the signal israputationally costly operation, cor-
responding to a so-calledon-uniformDFT (see [61] for details). Its cost would override any
potential savings.

In this chapter, we introduce a different approach: instdfaglibtracting the identified coeffi-
cients from thesignal we subtract them directly from th@nsobtained by filtering the signal. The
latter operation can be done in time linear in the number bfragted coefficients, since each of
them “falls” into only one bin. Hence, the computationaltsasf each iteration can be decomposed
into two terms, corresponding to filtering the original aand subtracting the coefficients. For
the exactly sparse case these terms are as follows:

e The cost of filtering the original signal i8(B log n), whereB is the number of binsB is set
to O(k'), wherek’ is the the number of yet-unidentified coefficients. Thugiatly B is equal
to O(k), but its value decreases by a constant factor after eactider

e The cost of subtracting the identified coefficients from thestis O (k).

Since the number of iterations 3(log k), and the cost of filtering is dominated by the first itera-
tion, the total running time i¥)(k log n) for the exactly sparse case.

“We note that although the two-sample approach employedrialgarithm works in theory only for the exacthy
sparse case, our preliminary experiments show that usieqy aore samples to estimate the phase works surprisingly
well even for general signals.

5In particular, the method of [52] uses measurements cavrepg to a random error correcting code.
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For the general case, we need to keaind B more carefully to obtain the desired running
time. The cost of each iterative step is multiplied by the banof filtering steps needed to com-
pute the location of the coefficients, which@log(n/B)). If we setB = ©(%’), this would
be ©(log n) in most iterations, giving @®(klog® n) running time. This is too slow wheh is
close ton. We avoid this by decreasing more slowly andt’ more quickly. In ther-th itera-
tion, we setB = k/poly(r). This allows the total number of bins to remair{k) while keeping
log(n/B) small—at mostO(log log k) more thanog(n/k). Then, by having:’ decrease accord-
ing to &' = k/r®(") rather thank /2°("), we decrease the number of roundgifiog &/ log log k).
Some careful analysis shows that this counteract®ghieg & loss in thelog(n/ B) term, achieving
the desired) (% log n log(n/k)) running time.

4.2 Algorithm for the Exactly Sparse Case

In this section, we assum& € {—L,..., L} for some precision parametér To simplify the
bounds, we assume < n° for some constant > 0; otherwise théog n term in the running time
bound is replaced blyg L. We also assume thatis exactlyk-sparse. We will use the filter with
parameted = 1/(4n?L).

Definition 4.2.1. We say that G, 6’\’) = (Gpsa, @B,g,a) c R x R" is aflat window function
with parameters3 > 1, § > 0, anda > 0 if [supp(G)| = O(£ log(n/é)) and G' satisfies

e G';=1for|i| < (1—a)n/(2B)andG'; = 0 for |i| > n/(2B)
o G'; €[0,1] forall i
¢ |G" = Cllos < 6.

The above notion corresponds to (¢ (25), (1 —«)/(2B),d, O(B/alog(n/0))-flat window
function. In Appendix D, we give efficient constructions ofch window functions, wheré' can
be computed irO (£ log(n/4)) time and for eact, G’; can be computed if (log(n/4)) time. Of
course, fori ¢ [(1 — a)n/(2B),n/(2B)], G'; € {0,1} can be computed i) (1) time. The fact
that G’; takesw(1) time to compute foi € [(1 — a)n/(2B), n/(2B)] will add some complexity
to our algorithm and analysis. We will need to ensure thatavely need to compute such values.
A practical implementation might find it more convenient tegompute the window functions in
a preprocessing stage, rather than compute them on the fly.

The algorithm NISELESSSPARSHE-FT (SFT 3.0) is described as Algorithm 4.2.1. The algo-
rithm has three functions:

e HASHTOBINS. This permutes the spectrum:o/f—\z with P, , 5, then “hashes” ta& bins. The
guarantee will be described in Lemma 4.2.4.

e NOISELESSSPARSEFFTINNER. Given time-domain access tcand a sparse vectarsuch that
r — z IS k’-sparse, this function finds “most” af — ~.

e NOISELESSSPARSHEFFT. This iterates RISELESSSPARSEFFTINNER until it finds z exactly.

We analyze the algorithm “bottom-up”, starting from the &@wlevel procedures.
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procedure HASHTOBINS(z, Z, Py o4, B, 9, @)
Computey;,,, s for j € [B], wherey = Gp o5 - (Poa2)
CompUtey/jn/B = @jn/B - (Gjlg,a,é * Pa,a,bz)jn/B forj € [B]
return @ given byd; = i/, /5.
procedure NOISELESSSPARSH-FTINNER(z, £/, Z, )
Let B = £’/ 3, for sufficiently small constant.
Letd = 1/(4n>L).
Chooser uniformly at random from the set of odd numbergsif.
Chooseb uniformly at random fromn|.
U < HASHTOBINS(z, 2, Py 04, B, 0, ).
U < HASHTOBINS(z, 2, P, 14, B, d, ).
w + 0.
Compute/ = {j : |g;| > 1/2}.
for j € Jdo
a < U /.
i <= o' (round¢(a)4:)) mod n. > ¢(a) denotes the phase of
v < round @;).
’l?)i — 0.
return w
procedure NOISELESSSPARSEFFT(z, k)
Z2<4+0
fort €0,1,...,logk do
ke < k/2%, oy < ©(277).
Z < Z + NOISELESSSPARSHFFTINNER(z, ky, Z, o).
return z

4.2.1: SFT 3.0: Exact Sparse Fourier Transforméifer o(n)

Analysis of NOISELESSSPARSEFFTINNER and HASHT OBINS.

For any execution of NISELESSSPARSEFFTINNER, define the suppol = supp(Z — Z). Recall
thatm, (i) = o(i — b) mod n. Defineh, (i) = roundr, ,(i)B/n) and o, (i) = 7, (i) —
hs»(1)n/B. Note that thereforéo, ,(i)| < n/(2B). We will refer toh, (i) as the “bin” that the
frequencyi is mapped into, and, ;(7) as the “offset”. For any € S define two types of events
associated with and S and defined over the probability space inducedrtandb:

e “Collision” event E,,;(7): holds iff h, (i) € h, (S \ {7}), and
e “Large offset” eventt,4(): holds iff |0, ;(7)| > (1 — a)n/(2B).

Claim 4.2.2. For anyi € S, the eventt,,; (i) holds with probability at most|S|/B.

61



Proof. Consider distinct,j € S. By Lemma. 2.2.7,

Pr(hy (i) = hep(j)] < Pr[myp(i) — m65(j) mod n € [—n/B,n/B]]
= Pr[o(i —j) mod n € [-n/B,n/B]]
< 4/B.

By a union bound ovef € S, Pr[E.;(i)] < 4|S|/B. N
Claim 4.2.3. For any: € S, the eventt,(4) holds with probability at most.

Proof. Note thato, (i) = 7, 4(i) = o(i — b) (mod n/B). Forany oddr and anyl € [n/B], we
have thatry[o(i — b) = | (mod n/B)| = B/n. Since onlyan/B offsetso, (i) causelg (i),
the claim follows. O

Lemma 4.2.4. Suppose3 dividesn. The outputz of HASHTOBINS satisfies

L —

B= Y (2-2),(Chsa)

ho,b(i):j

—ogﬁb(i)w + 5H$H1

Let¢ = [{i € supp(Z) | Eop(i)}|. The running time oHASHTOBINS is O(£ log(n/d) + |20 +
(log(n/d)).

Proof. The proof can be found in Appenclix A.3. ]

Lemma 4.2.5. Consider any; € S such that neithe,,; (i) nor E.z(4) holds. Letj = h, ; (7).
Then

PN :
rouncl(gﬁ(uj/uj’-))%) =04 (mod n),
round ;) = 2; — 2,
andj € J.
Proof. The proof can be found in Appenclix A.4. O]

For each invocation of NISELESSSPARSEFFTINNER, let P be the the set of all pairg, v)
for which the command); +— v was executed. Claims 4.2.2 and 4.2.3 and Lemma 4.2.5 together
guarantee that for eache S the probability thatP? does not contain the pafi, (z — 2);) is at
most4|S|/B + «. We complement this observation with the following claim.

Claim 4.2.6. For any;j € J we havej € h,;,(S). Therefore)J| = |P| < |S].

Proof. Consider any ¢ h, ,(.5). From Equation (A.1) in the proof of Lemma 4.2.5 it followsth
|4;| < onl < 1/2. O

Lemma4.2.7.Consider an execution dOISELESSSPARSEFFTINNER, and letS = supp(z—2).
If |S| < k', then
Ellz =% — wllo] < 8(8 + )|5].
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Proof. Let e denote the number of coordinatess S for which eitherE,,; (i) or Eyz (i) holds.
Each such coordinate might not appearimwith the correct value, leading to an incorrect value
of w;. In fact, it might result in an arbitrary pa(i’, v") being added ta@”, which in turn could lead
to an incorrect value ofi;;. By Claim 4.2.6 these are the only ways thatcan be assigned an
incorrect value. Thus we have

12 —2 — w|o < 2e.

SinceE|e] < (4|S|/B + «)|S| < (48 + «)|S|, the lemma follows. O

Analysis of NOISELESSSPARSEFFT.

Consider theth iteration of the procedure, and defifie= supp(z — Z) wherez denotes the value
of the variable at the beginning of loop. Note thé| = | supp(z)| < k.

We also define an indicator variablewhich is equal td) iff |S;|/|S;—1| < 1/8.1f I, = 1 we
say the theth iteration was nosuccessfulLety = 8 - 8(8 + «). From Lemma 4.2.7 it follows
thatPr[l; = 1| |S;_1| < k/2"7'] < ~. From Claim 4.2.6 it follows that even if thigh iteration is
not successful, thefb;|/|S:-1| < 2.

For anyt > 1, define an evenk'(¢) that occurs iffy>!_, I, > t/2. Observe that if none of the
eventsk(1) ... E(t) holds then S| < k/2°.

Lemma 4.2.8.LetE = E(1) U...U E()\) for A = 1 + log k. Assume that4~)'/? < 1/4. Then
Pr[E] < 1/3.

Proof. Let ¢’ = [¢/2]. We have

Therefore

1/2
Pr(E] <3 Pr[E(t)] < % <1/4-4/3=1/3.

]

Theorem 4.2.9.Supposé is k-sparse with entries frofi—L, . . ., L} for some knowrL, = n9®),
Then the algorithmNOISELESSSPARSEFFT runs in expected)(k log n) time and returns the
correct vectorz with probability at leasg/3.

Proof. The correctness follows from Lemma 4.2.8. The running timddminated byO(log k)
executions of ASHTOBINS.
Assuming a correct run, in every roundve have

1Zll0 < ||Z]lo + |S:] < b+ k/2" < 2k.

Therefore
E[[{i € supp(2) | Eogy (1) }[] < f|Z]lo < 20k,
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so the expected running time of each execution 86HToBINs is O (£ log(n/8)+k+aklog(n/d)) =
O(Zlogn + k + aklogn). Settinga = ©(27"/2) and 8 = O(1), the expected running time
in round ¢ is O(27"2klogn + k + 272k log n). Therefore the total expected running time is
O(klogn). O

4.3 Algorithm for the General Case

For the general case, we only achieve Equation (4.1)fer 1+¢if ||Z[s < n°M -ming-sparse |7 —
y||2- In general, for any parametér- 0 we can add||z||» to the right hand side of Equation (4.1)
and run in timeO (k log(n/k) log(n/J)).

Pseudocode for the general algorithm SFT 4.0 is shown inrlgo 4.3.1. and 4.3 2.

4.3.1 Intuition

Let S denote the “heavyO(k/¢) coordinates of:. The overarching algorithmBRSEFFT (SFT
4.0) works by first “locating” a set containing most of5, then “estimating™;, to getz. It then
repeats onr — z. We will show that each heavy coordinate has a large congtatiability of
both being inL and being estimated well. As a result— z is probably nearly: /4-sparse, so we
can run the next iteration with — % /4. The later iterations then run faster and achieve a higher
success probability, so the total running time is dominétethe time in the first iteration and the
total error probability is bounded by a constant.

In the rest of this intuition, we will discuss the first itamat of SPARSEFFT with simplified
constants. In this iteration, hashes areBto= O(k/e¢) bins and, with3/4 probability, we get
S0z — 2 is nearlyk /4-sparse. The actual algorithm will involve a parametén each iteration,
roughly guaranteeing that with- /« probability, we get S0z — zis nearly,/ak-sparse; the for-
mal guarantee will be given by Lemrna 4.3.8. For this intaitiee only consider the first iteration
whereq is a constant.

Location

As in the noiseless case, to locate the “heavy” coordinagesamsider the “bins” computed by
HAsSHTOBINS with P, , ;. This roughly corresponds to first permuting the coordisaiecording
to the (almost) pairwise independent permutation, ,, partitioning the coordinates int8 =
O(k/e) “bins” of n/B consecutive indices, and observing the sum of values in ki@ctWe get
that each heavy coordinatiéhas a large constant probability that the following two ésetcur:
no other heavy coordinate lies in the same bin, and only al§n®a) O(e/k)) fraction of the mass
from non-heavy coordinates lies in the same bin. For suchedi-fwashed” coordinaté we would
like to find its locationr = 7, (i) = o(i — b) among the:n/k < n/k consecutive values that
hash to the same bin. Let

J

0 = 277:(] +0b) (mod 27). (4.2)
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sS0fr = %”m’. In the noiseless case, we showed that the difference irephdBe bin using?, o ;
and usingP, ; ; is 6% plus a negligibleO (§) term. With noise this may not be true; however, we can
say for anys € [n] that the difference in phase between usiyg, , andP, . s, as a distribution
over uniformly randonu € [n], is 367 + v with (for example)E[v?] = 1/100 (all operations on
phases moduldr). We can only hope to get a constant number of bits from suchea$urement”.
So our task is to fina within a region@ of sizen/k using O(log(n/k)) “measurements” of this
form.

One method for doing so would be to simply do measurementsrasitdom3 € [n]|. Then each

measurement lies withim/4 of 50 with at leastl — fz[l//i]ﬁ > 3/4 probability. On the other hand, for
j # 7 and as a distribution ovet, 3(0; — 67) is roughly uniformly distributed around the circle.
As a result, each measurement is probably more thanaway fromj360;. HenceO(log(n/k))
repetitions suffice to distinguish among thek possibilities forr. However, while the number of
measurements is small, it is not clear how to decode in pglsdther tharf2(n/k) time.

To solve this, we instead do @ary search on the location far = ©(logn). At each of

O(log,(n/k)) levels, we split our current candidate regiQnnto ¢ consecutive subregior, . . ., Q;,
each of sizew. Now, rather than choosing € [n], we chooses € [, g-]. By the upper bound

on, for eachy € [¢] the valueg30; | j € Q,} alllie within Sw2* < /4 of each other on the cir-
cle. On the other hand, |f — 7| > 16w, thenj(0; — 07) will still be roughly uniformly distributed
about the circle. As a result, we can check a single candelateente, from each subregion: if
eq IS in the same subregion aseach measurement usually agrees in phase; byisfmore than
16 subregions away, each measurement usually disagreesda.gf@nce withD (log ¢) measure-
ments, we can locateto within O(1) consecutive subregions with failure probabilityt®™). The
decoding time i0(t log t).

This primitive LOCATEINNER lets us narrow down the candidate region faio a subregion
that is at’ = Q(t) factor smaller. By repeatingdCATEINNER log,, (n/k) times, LOCATESIGNAL
can findr precisely. The number of measurements is ti¥iog ¢ log,(n/k)) = O(log(n/k))
and the decoding time i®(tlog tlog,(n/k)) = O(log(n/k)logn). Furthermore, the “measure-
ments” (which are actually calls to AAHTOBINS) are non-adaptive, so we can perform them
in parallel for all O(k/¢) bins, with O(log(n/d)) average time per measurement. This gives
O(klog(n/k)log(n/d)) total time for LOCATESIGNAL.

This lets us locate every heavy and “well-hashed” cooreinaith 1/t°1) = o(1) failure
probability, so every heavy coordinate is located withtaalily high constant probability.

Estimation

By contrast, estimation is fairly simple. As in Algorithm 412we can estimater — z), ast, (i),
whereu is the output of ASHTOBINS. Unlike in Algorithm 4.2..L, we now have noise that may
cause a single such estimate to be poor evesif'well-hashed”. However, we can show that for
a random permutatiof, , , the estimate is “good” with constant probabilitysEMATEVALUES
takes the median ak.;; = O(log %) such samples, getting a good estimate With ¢/64 proba-
bility. Given a candidate sdt of sizek /¢, with 7/8 probability at most /8 of the coordinates are
badly estimated. On the other hand, witf8 probability, at least% /8 of the heavy coordinates
are both located and well estimated. This suffices to shotywith 3/4 probability, the largest
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procedure SPARSE-FT(z, £, €, 9)
R < O(log k/loglog k) as in Theorem 4.3.9.
2M 0
for r € [R] do
ChooseB,, k., o, as in Theorem 4.3.9.
Reg < O(log(Z-)) asin Lemma 4.3 8.
L, + LOCATESIGNAL (2,2, B,, a,., §)
2+ < 2(") 4 ESTIMATEVALUES(z, 2", 3k,, Ly, B,, 0, Reg).
return Z(#+1
procedure ESTIMATEVALUES(z, Z, k', L, B, 0, Res)
for r € [R.,] do
Chooseu,, b, € [n] uniformly at random.
Chooser, uniformly at random from the set of odd numbergsin.
(") < HASHTOBINS(z, 2, Py a1, B, 9).
w <0
for i € Ldo

W; < median, a,ﬁ? W > Separate median in real and imaginary a

b
J < argmax;_ || W;||2.

return w;

XEeS.

4.3.1: SFT 4.0: General Sparse Fourier Transfornkfer o(n), Part 1/2.

elements/ of our estimater contains good estimates 8% /4 large coordinates, SO— 2z —wy is

close tok /4-sparse.

4.3.2 Analysis

Formal definitions

As in the noiseless case, we defing,(i) = o(i — b) mod n, h, (i) = roundr, ,(i)B/n) and

00.5(1) = Ty (1) — hop(i)n/B. We sayh, ;(4) is the “bin” that frequency is mapped into, and

0,4(i) is the “offset”. We definé:, ; (j) = {i € [n] | ho(i) = j}.
Define

Brr(z, k) = min_ ||z —yl..

~

In each iteration of SBARSEFFT, definez’ = 7 — Z, and let

p* = Err®(¢/, k) + 6°n||Z}
pt = ep?/k
S={ienl| |z >’}

Then|S| < (1 4+ 1/e)k = O(k/e) and||z’ — 2’s||3 < (1 + €)p*. We will show that eacti € S is

found by LOCATESIGNAL with probabilityl — O(«), whenB = Q(£).
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procedure LOCATESIGNAL (z, z, B, «, §)
Choose uniformly at random, b € [n] with o odd.
Initialize 1" = (i — 1)n/B for i € [B.
Letwy =n/B,t =logn,t' = t/4, Dy = log, (wo + 1).
Let R;,. = @(logl/a(t/a)) per Lemma 4.3.5.
for D € [D,,,] do
[(P+1) « LOCATEINNER(7,Z2, B, 6, a, 0, 3, 1P wo /()P ¢, Ripe)
L {mgy (4" V) | j € [B]}
return L
> 0, a parameters fot7, G’
> (b, h +w),..., (I, g + w) the plausible regions
> B ~ k/e the number of bin
> ¢t ~ log n the number of regions to split int
> Ry = logt = loglog n the number of rounds to ru
procedure LOCATEINNER(z, 2z, B, 0, a, 0, b, [, w, t, Rjy.)
Lets = O(al/?).
Letv; , = 0for (4, ¢) € [B] x [t].
for r € [R),.| do
Choosen € [n] uniformly at random.
Choosesd € {3, ..., £2} uniformly at random.
U < HASHTOBINS(z, 2, Py 44, B, 0, ).
t' <~ HASHTOBINS(z, 2, Py 4484, B, J, a).
for j € [B] do
&  O(/T)
for ¢ € [t] do
m;q < L + q_tl/Qw
ej,q “ 27 (mj g+0ob

S8o®

) mod 27
if min(|56;,, — ¢;|,2m —1560;,, — ¢;|) < smthen
Vg < Vjqg+1
for j € [B] do
Q" —{q e [t]| vy > Rioc/2}
if Q* # (0 then
[} <= mingeq- j + =Ly
else
1
return '

4.3.2: SFT 4.0: General Sparse Fourier Transfornkfer o(n), Part 2/2.
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For any: € § define three types of events associated wittnd S and defined over the
probability space induced hyandb:

e “Collision” event E,,;(7): holds iff 2, (i) € hy (S \ {7});
e “Large offset” eventt,y (i): holds iff |0, 5(7)| > (1 — a)n/(2B); and
e “Large noise” event,,,;.(i): holds iff Hx/h_})(hg Jonsllz > Err®(2', k)/(aB).

By Claims 4.2.2 and 4.2.®r[E,;(i1)] < 4|S|/B = O(a) andPr[E,z(i)] < 2a foranyi € S.
Claim 4.3.1. For anyi € S, Pr[E, s (7)] < 4a.

Proof. For eachj # i, Pr[h, ;(j) = hy(2)] < Pr[loj —oi| < n/B] < 4/B by Lemma. 2.2.7.
Then
E[\|$’h;i(hg,b(i))\s|\%] < A||2"psll3/ B

The result follows by Markov’s inequality. n

We will show fori € S thatif none ofE,,; (i), E,z (i), andE,,s. () hold then $PARSEFFTIN-
NER recoverst; with 1 — O(«) probability.

Lemma4.3.2.Leta € [n] uniformly at random}j3 dividen, and the other parameters be arbitrary
in
@ = HASHTOBINS(2, 2, Py 45, B, 6, ).

Then for anyi € [n] withj = h, (i) and none o, (i), Eog (i), OF E,pise (i) holding,

E[‘ﬂ] — x/iwa“’

Proof. The proof can be found in Appenclix A.5. O

Properties of LOCATE SIGNAL

In our intuition, we made a claim that if € [n/(16w), n/(8w)] uniformly at random, and >
16w, then%’rﬂi is “roughly uniformly distributed about the circle” and rennot concentrated in
any small region. This is clear if is chosen as a random real number; it is less clear in oungetti
wheref is a random integer in this range. We now prove a lemma thatdbzes this claim.

Lemma 4.3.3.Let T C [m] consist oft consecutive integers, and suppgses 7' uniformly at
random. Then for any € [n] and setS C [n] of [ consecutive integers,

1 im Im 1
Pr[fimod n € S] < [im/n] (1+ [l/i])/t < -+ —+ —+ —
r[fi mod n € S] < [im/n] (1 + [1/i])/t < i s
Proof. Note that any interval of lengthcan cover at most + |//i| elements of any arithmetic
sequence of common differenceThen{gi | 5 € T} C [im] is such a sequence, and there are
at most[sm/n] intervalsan + S overlapping this sequence. Hence at mjest/n| (1 + |[/i]) of
the s € [m] havesi mod n € S. HencePr[fi mod n € S| < [im/n] (1 + |1/i])/t. O
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Lemma4.3.4.Leti € S. Suppose none @, (7), E,5 (1), and E,, ;5. (i) hold, and letj = h, ; (7).
Consider any run ofLOCATEINNER with 7, ,(¢) € [[;,]; + w] . Letf > 0 be a parameter such
that Ch

B=—"
afe

for C' larger than some fixed constant. Then,(i) € [I,l; + 4w/t] with probability at least
1 — th(Rloc)'

Proof. The proof can be found in Appenciix A.6. n

Lemma 4.3.5.SupposeB = % for C' larger than some fixed constant. The procedute ATES -
IGNAL returns a setl of size|L| < B such that for any € S, Pr[: € L] > 1 — O(«). Moreover
the procedure runs in expected time

0((§10g(n/5) +1IZ[lo(1 + alog(n/d))) log(n/ B)).

Proof. The proof can be found in Appenclix A.7. ]

Properties of ESTIMATE VALUES

Lemma 4.3.6.For any: € L,

~

2
PI‘[ ’I/I\Jl — {17/2' > /LQ] < €7Q(R65t)

if B > % for some constant.

Proof. The proof can be found in Appenciix A.8. ]

Lemma4.3.7.LetR.,; > C'log % for some constant’ and parameters, f > 0. Then if ESTI-
MATEVALUES is run with inputk’ = 3k, it returnsw; for |J| = 3k satisfying

Err®(z] — @y, fk) < Exr®(z, k) + O(kp?)

with probability at leastl — ~.
Proof. The proof can be found in Appenciix A.9. n

Properties of SPARSEFFT
We will show thatz — 2(") gets sparser asincreases, with only a mild increase in the error.

Lemma 4.3.8. Definez(") = 7 — 2("). Consider any one loop of SPARSEFFT, running with
parameter§ B, k, o) = (B,, k., a,) such thatB > % for someC larger than some fixed constant.
Then for anyf > 0,

Err? (20D k) < (14 €) Err?(27, k) 4+ 0(e6?n|Z||?)
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with probability1 — O(«/f), and the running time is

O 11 + o log(n/8)) + = log(n/8))(105 -+ lo(n/B))).

Proof. The proof can be found in Appenciix A.10. n

Given the above, this next proof follows a similar argumer{Bt], Theorem 3.7.

Theorem 4.3.9.With 2/3 probability, SPARSEFF T recoversz(“+1) such that
12 — 25Dy < (1 + €) Ere(2, k) + 8[| 22

in O(£1og(n/k)log(n/d)) time.

Proof. The proof can be found in Appenclix A.11. O

4.4 Extension to Two Dimensions

This section outlines the straightforward generalizatdi®FT 4.0 shown in Algorithm 4.3.1 to
two dimensions. We will refer to this algorithm as SFT 4.1.

Theorem 4.4.1.There is a variant of Algorithrn 4.3.1 that will, givenz € CY™*V"| return z/
with
12 -2 -2 <2- min_[|7 —Z—2*|3 +[|Z3/n°
k-sparsez*

with probability 1 — « for any constantg, « > 0 in time
O(klog(n/k)log® n + |supp(2)|log(n/k)log n),

using O(k log(n/k)log® n) samples of;.

Proof. We need to modify Algorithra 4.3.1 in two ways: by extendingpitwo dimensions and by
allowing the parameter.t We will start by describing the adaptation to two dimensions

The basic idea of Algorithrm 4.3.1 is to construct from Foureeasurements a way to “hash”
the coordinates i? = O(k) bins. There are three basic components that are neegedraitation
that gives nearly pairwise independent hashing to birfittea that allows for computing the sum
of bins using Fourier measurements; andltoationestimation needs to search in both axes. The
permutation is the main subtlety.

5We includeZ so we can use this a subroutine for partial recovery in tHevidhg chapter. However, the inpat
can be set to zero in which case we get#hé, guarantee for a 2D version of SFT 4.0.
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Permutation Let M C [/n]**? be the set of matrices with odd determinant. For notational
purposes, fov = (4, ) we definez, := x; ;.

Definition 4.4.2. For M € M anda,b € [\/n]?, we define thgermutationPy; , ,CV**V" —
CV»*V™ py

(PM,a,bx)v = xM(v—a)(w/)vTMb'

We also defing, ,(v) = M(v — b) mod /n.

. — ~ vTMTa
Claim 4.4.3. PM»“vawMT,,,(u) =Z,(W)" M

Proof.
— 1 -
PM’a7be(,U_b) - Z (w/)uTM(U b)(PM a bx>u
" uelvare
1
— 7 Z <w/)uTM(U—b)x (u7a (w/)uTMb
u€lvn)?
_ o wTMTa 1 NoTMT (u—a)
w — (W) LM (u—a)
\/ﬁ u€[y/n)?
— Ai( /)vTMTa
where we used that/ 7 is a bijection ovef,/n]? becauselet()) is odd. O

This gives a lemma analogous to Lemma 2.2.7 from Chapter 3.
Lemma 4.4.4.Suppose € [/n]? is not0. Then

e [0 cF mod v < 0()

n

Proof. For anyu, define G(u) to be the largest power &f that divides bothu, and «,. Define
g = G(v),and letS = {u € [\/n]* | G(u) = g}. We have that\/v is uniform overS: M is a
group ands is the orbit of(0, g).

BecauseS lies on a lattice of distance and does not include the origin, there are at most
(21C/g| +1)> =1 < 8(C/g)? elements inS N [—C, C]?, and(3/4)n/g* total elements irf.
Hence, the probability is at mo&32/3) C?/n. O

We can then define the “hash functiony;, : [v/n]? — [VB]? given by (hys(u)) =
round(my 5 (u) - y/n/B);i.e., round to the nearest multiple gfn/B in each coordinate and scale

down. We also define the “offsety; ,(u) = mas(u) — \/n/Bhy p(u). This lets us give results
analogous to Claims 4.2.2 and 4.2.3 from Chapter 4:

o Prihy(u) = hyp(v) < O(1/B)] for u # v. In order forh(u) = h(v), we need that

2 . - . _pe .
T p(u) — Ty p(v) € [—2 n/B,2y/n/B| . But Lemma 4.4.4 implies this probability is
O(1/B).
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o Prloys(u) ¢ [—(1—a)y/n/B,(1—a)/n/B?| < O(a) for anya > 0. Because of the

2
offsetd, o »(u) is uniform over[—\/n/B, \/n/B} . Hence the probability i8a — o + o(1)
by a volume argument.

which are all we need of the hash function.

Filter Modifying the filter is pretty simple. Specifically, we defindlat-window filterG € RvV"
with support sizeO(v/Blog n) such thatG is essentially zero outsiz%u,/n/B, ,/n/B} and is

essentiallyl inside [—(1 —a)y/n/B, (1 - a)\/n/B} for constantv. We compute the/B x /B
2-dimensional DFT ofi/, = 1;;G;G; to sum up the element in each bin. This takekg® n
samples and time rather thahlog n, which is the reason for the extieg n factor compared to
the one dimensional case.

Location Location is easy to modify; we simply run it twice to find thewand column sepa-
rately. We will see how to do this in the following chapter asliw

In summary, the aforementioned adaptations leads to antarfaAlgorithm 4.3.1 that works
in two dimensions, with running timé (k log(n/k) log® n), using O (k log(n/k) log® n) samples.

Adding extra coefficient list Z The modification of the Algorithm 4.3.1 (as well as its vatian
above) is straightforward. The algorithm performs a seqaef iterations, where each iteration
involves hashing the frequencies of the signal into bingpvieed by subtracting the already recov-
ered coefficients from the bins. Since the algorithm reco@€¥;) coefficients in the first iteration,
the subtracted list is always of Sigg k).

Given the extra coefficient list, the only modification to thlgorithm is that the list of the
subtracted coefficients needs to be appended with coetdiea. Since this step does not affect
the samples taken by the algorithm, the sample bound remaagignged. To analyze the running
time, letkt’ be the number of nonzero coefficientszinObserve that the total time of the original
algorithm spent on subtracting the coefficients from a lisdipe © (k) was O(k log(n/k) logn),
or O(log(n/k)logn) per list coefficient. Since in our case the number of coeffisien the
list is increased fron® (k) to &’ + ©(k), the running time is increased by an additive factor of
O(k'log(n/k)logn). O
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Chapter 5

Optimizing Sample Complexity

5.1 Introduction

The algorithms presented in Chapter 4 achieve very efficieming times. However, they still
suffer from important limitations. The main limitation is&t their sample complexity bounds are
too high. In particular, the sample complexity of the exaétisparse algorithm i® (% log n). This
bound is suboptimal by a logarithmic factor, as it is knowattbne can recover any signal with
k nonzero Fourier coefficients fror@ (k) samples [8], albeit in super-linear time. The sample
complexity of the approximately-sparse algorithmeisk log(n) log(n/k)). This bound is also a
logarithmic factor away from the lower bound @tk log(n/k)) [146)].

Reducing the sample complexity is highly desirable as itdgiby implies a reduction in signal
acquisition time, measurement overhead and communicatisin For example, in medical imag-
ing the main goal is to reduce the sample complexity in ordeeduce the time the patient spends
in the MRI machine [114], or the radiation dose she receivé§][1Similarly in spectrum sens-
ing, a lower average sampling rate enables the fabricafieffioient analog to digital converters
(ADCs) that can acquire very wideband multi-GHz signals [184 fact, the central goal of the
area of compressed sensing is to reduce the sample complexit

A second limitation of the previous algorithms is that mokthem are designed for one-
dimensional signals. We have show in Section 4.4 that a twiasional adaptation of the SFT 4.0
algorithm in Chapter 4 has roughty(k log® n) time and sample complexity. This is unfortunate,
since multi-dimensional instances of DFT are often paldidy sparse. This situation is somewhat
alleviated by the fact that the two-dimensional DFT owex ¢ grids can be reduced to the one-
dimensional DFT over a signal of length [5S, 90]. However, the reduction applies onlyifand
q are relatively prime, which excludes the most typical cadse. o< m grids wherem is a power
of 2.

5.1.1 Results

In this chapter, we present sample-optimal sublinear tilgerahms for the sparse Fourier trans-
form over a two-dimensional/n x \/n grid. Our algorithms are analyzed in the average case.
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Our input distributions are natural. For the exactly spa@sse, we assume the Bernoulli model:
each spectrum coordinate is nonzero with probabfljty, in which case the entry assumes an ar-
bitrary value predetermined for that positibfor the approximately-sparse case, we assume that
the spectrunt of the signal is a sum of two vectors: the signal vector, chdsam the Bernoulli
distribution, and the noise vector, chosen from the Gaogdistribution (see Chapter 2 Prelimi-
naries for the complete definition). These or sinfildistributions are often used as test cases for
empirical evaluations of sparse Fourier Transform alporg [89, 104] or theoretical analysis of
their performance [104].

The algorithms succeed with a constant probability. Thenatf success depends on the sce-
nario considered. For the exactly sparse case, an algosteatcessful if it recovers the spectrum
exactly. For the approximately sparse case, the algoritheuccessful if it reports a signal with
spectrunt such that:

Iz = 2|3 = O(c™n) + [12]3/n°, (5.1)

wheres? denotes the variance of the normal distributions definimdp eaordinate of the noise vec-
tor, and where: is any constant. Note that akysparse approximation t©has erro€)(s%n) with
overwhelming probability, and that the second term in thenalin Equation (5.1) is subsumed by
the first term as long as the signal-to-noise ratio is at molgtymial, i.e.,||Z]|; < n°Wo,
Assuming,/n is a power of2, we present two new Sparse Fourier Transform algorithms:

e An O(klog k)-time algorithm that uses onk§ (%) samples for the exactly-sparse case where

k= 0O(y/n),and

e An O(klog® n)-time algorithm that uses onlg (k log n) samples for the approximately sparse
case wheré = O(n).

The key feature of these algorithms is that their sample ¢exitp bounds are optimal. For the
exactly sparse case, the lower bound'Xy%) is immediate. For the approximately sparse case,
we note that thé(k log(n/k)) lower bound of [146] holds even if the spectrum is the sum of a
k-sparse signal vector ifD), 1, —1}™ and Gaussian noise. The latter is essentially a speciabfase
the distributions handled by these algorithms.

An additional feature of the first algorithm is its simpliciand therefore its low “big-Oh”
overhead. As a result, this algorithm is easy to adapt fastjwal applications.

5.1.2 Techniques

Ouir first algorithm fork-sparse signals is based on the following observation: Tiaeilag filter
(i.e., uniform sub-sampling) is one of the most efficient ey mapping the Fourier coefficients

INote that this model subsumes the scenario where the vafits aonzero coordinates are chosen i.i.d. from
some distribution.

2A popular alternative is to use the hypergeometric distidisuover the set of nonzero entries instead of the
Bernoulli distribution. The advantage of the former is tiagields vectors of sparsitgxactlyequal tok. In this
chapter we opted for the Bernoulli model since it is simpteaihalyze. However, both models are quite similar. In
particular, for large enough, the actual sparsity of vectors in the Bernoulli model isrplyaconcentrated arounkl
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a) Original Spectrum ow recovery (c) Step 2: Column recovery

1| |

Step 3: Row recovery (e) Step 4: Column recovery Step 5: Row Recovery

Figure 5-1:An lllustration of the 2D Sparse Fourier Transform Algorith m. This illustration
shows the “peeling” recovery process onsax 8 signal with 15 nonzero frequencies. In each step,
the algorithm recovers all-sparse columns and rows (the recovered entries are deicted).
The process converges after a few steps.

m

m

- |
|

it
Figure 5-2:Examples of Obstructing Sequences of Non-zero Coefficientdone of the remain-
ing rows or columns has a sparsity of 1.

a) (b)
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into buckets. For one-dimensional signals however, thisrfis not amenable to randomization.
Hence, when multiple nonzero Fourier coefficients collidk® the same bucket, one cannot effi-
ciently resolve the collisions by randomizing the spikasirfilter. In contrast, for two-dimensional
signals, we naturally obtain two distinct spike-train fi¢ewhich correspond to subsampling the
columns and subsampling the rows. Hence, we can resohidinglinonzero Fourier coefficients
by alternating between these two filters.

More specifically, recall that one way to compute the two-hisional DFT of a signat is to
apply the one-dimensional DFT to each column and then to eaehSuppose that = a+/n for
a < 1. In this case, the expected number of nonzero entries in achs less thar. If every
row contained exactly one nonzero entry, then the DFT coealddmputed via the following two
step process. In the first step, we select the first two coluwhns denoted by:(® and«™), and
compute their DFTE(® anda(V). Let j; be the index of the unique nonzero entry in thid row
of z, and leta be its value. Observe th@lﬁo) = a and a§” = a(w')™7 (wherew' is a primitive
v/n-th root of unity), as these are the first two entries of theise Fourier transform of asparse

signalae;,. Thus, in the second step, we can retrieve the value of theemorentry, equal t@(o),

as well as the indey from the phase of the rati@fl)/ai(o). (We first introduced this technique in
Chapter 4 and we referred to it as the “OFDM trick”). The totale is dominated by the cost of
the two DFTs of the columns, which 8(y/n log n). Since the algorithm queries only a constant
number of columns, its sample complexity(g+/n).

In general, the distribution of the nonzero entries overdwes can be non-uniform —i.e., some
rows may have multiple nonzero Fourier coefficients. Thus, actual algorithm alternates the
above recovery process between the columns and rows (s@e Big. for an illustration). Since the
OFDM trick works only onl-sparse columns/rows, we check thsparsity of each column/row
by sampling a constant number of additional entries. We #ew that, as long as the sparsity
constanta is small enough, this process recovers all entries in a iibgaic number steps with
constant probability. The proof uses the fact that the godibaof the existence of an “obstructing
configuration” of nonzero entries which makes the processlideked (e.g., see Figure 3-2) is
upper bounded by a small constant.

The algorithm is extended to the caséof o(/n) via areduction. Specifically, we subsample
the signalz by the reduction ratid? = a\/n/k for some small enough constanin each dimen-
sion. The subsampled signélhas dimensior/m x /m, where\/m = £. Since subsampling in
time domain corresponds to “spectrum folding”, i.e., addiogether all frequencies with indices
that are equal modulg/m, the nonzero entries afare mapped into the entriesof It can be seen
that, with constant probability, the mapping is one-to-dhthis is the case, we can use the earlier
algorithm for sparse DFT to compute the nonzero frequerinig®(y/m log m) = O(vVklogk)
time, usingO (k) samples. We then use the OFDM trick to identify the positiointhose frequen-
cies.

Our second algorithm works fapproximatelysparse data, at sparsi§(/n). Its general
outline mimics that of the first algorithm. Specifically, itexnates between decoding columns
and rows, assuming that they aresparse. The decoding subroutine itself is similar to tHat o
Algorithm 4.3.2. and use®(log n) samples. The subroutine first checks whether the decodsd ent
is large; if not, the spectrum is unlikely to contain any Eentry, and the subroutine terminates.
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The algorithm then subtracts the decoded entry from thenwoland checks whether the resulting
signal contains no large entries in the spectrum (which dbel the case if the original spectrum
was approximatelyl-sparse and the decoding was successful). The check is dosantpling
O(log n) coordinates and checking whether their sum of squares i. Slog@rove that this check
works with high probability, we use the fact that a collentadf random rows of the Fourier matrix
is likely to satisfy the Restricted Isometry Property of [25]

A technical difficulty in the analysis of the algorithm is thlae noise accumulates in successive
iterations. This means thatla log®™") n fraction of the steps of the algorithm will fail. However,
we show that the dependencies are “local’, which means timaawalysis still applies to a vast
majority of the recovered entries. We continue the iteeatiecoding forog log n steps, which
ensures that all but &/ log®® n fraction of the large frequencies are correctly recovefied.
recover the remaining frequencies, we resort to algoritwtisworst-case guarantees.

5.1.3 Extensions

Our algorithms have natural extensions to dimensions hitifa 2. We do not include them in
this chapter as the description and analysis are rather exsmime.

Moreover, due to the equivalence between the two-dimeakmase and the one-dimensional
case wheren is a product of different prime powers [59, 90], our algamthalso give optimal
sample complexity bounds for such values:qfe.g.,n = 6) in the average case.

5.1.4 Distributions

In the exactly sparse case, we assume a Bernoulli model faughygort ofz. This means that for
all (i,5) € [\/n] x [\/n], P(7,7) € supp (Z)} = k/n and thudE[|supp (Z)|] = k. We assume an
unknown predefined matrix; ; of values inC; if 7, ; is selected to be nonzero, its value is set to
;5.

In the approximately sparse case, we assume that the sigaaqual toz* + @ € CV*™*vV",
wherez*, ; is the “signal” andw is the “noise”. In particularz* is drawn from the Bernoulli
model, where:*; ; is drawn from{0, g, ;} at random independently for each j) for some values
a;; and withE[|supp(z*)|] = k. We also require thats, ;| > L for some parametek. o is
a complex Gaussian vector with varianegin both the real and imaginary axes independently
on each coordinate; we notate this@as~ N¢(0,021,). We will need thatl, = Cq/nTk for a

sufficiently large constant’, so thatE[||z*||2] > C E[||@]|3].
We show in Appendix E that the sample lower boundXf: log (n/k)) on ¢5 /(s recovery
from [146] applies to the above Bernoulli model.

5.2 Algorithm for the Exactly Sparse Case

The algorithm for the noiseless case depends on the sparsityeret = El|supp (z)|] for a
Bernoulli distribution of the support.
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5.2.1 Exact Algorithm: & = ©(y/n)

In this section, we focus on the regirie= ©(y/n). Specifically, we will assume thét = a/n
for a (sufficiently small) constant > 0.

The algorithm B\SICEXACT2DSFFT (SFT 5.0) is described as Algorithm 5.2.1. The key
idea is to fold the spectrum into bins using the aliasingrfittefined in Chapter 2 and estimate
frequencies which are isolated in a bin. The algorithm takesFFT of a row and as a result
frequencies in the same columns will get folded into the seamebin. It also takes the FFT of a
column and consequently frequencies in the same rows wifiodged into the same column bin.
The algorithm then uses the OFDM trick introduced in Chaptericover the columns and rows
whose sparsity is 1. It iterates between the column bins awdbins, subtracting the recovered
frequencies and estimating the remaining columns and rowasse sparsity is 1. An illustration
of the algorithm running on af x 8 signal with 15 nonzero frequencies is shown in Figure 5-1
in Section 5.1. The algorithm also takes a constant numbextoh FFTs of columns and rows to
check for collisions within a bin and avoid errors resultirgm estimating bins where the sparsity
is greater than 1. The algorithm uses three functions:

e FOLDTOBINS. This procedure folds the spectrum inth x B, bins using the aliasing filter
described in Chapter 2.

e BASICESTFREQ. Given the FFT of rows or columns, it estimates the frequandfe large
bins. If there is no collision, i.e. if there is a single noreé&equency in the bin, it adds this
frequency to the result and subtracts its contribution to the row and column bins.

e BASICEXACT2DSFFT. This performs the FFT of the rows and columns and itezates
BASICESTFREQ between the rows and columns until is recovers

Analysis of BASICEXACT 2DSFFT

Lemma 5.2.1.For any constantx > 0, if ¢ > 0 is a sufficiently small constant, then assuming that
all 1-sparsity tests in the proceduBasICESTFREQare correct, the algorithm reports the correct
output with probability at least — O(«).

Proof. The algorithm fails if there is a pair of nonzero entries inodumn or row ofz that “sur-
vives” t,... = C'log n iterations. For this to happen there must be an “obstrutsegquence of
nonzero entrie®y, ¢, p2, @2 ... pi, 3 < t < tnaz, SUCh that for each > 1, p, andg; are in the
same column (“vertical collision”), while, andp,,, are in the same row (“horizontal collision”).
Moreover, it must be the case that either the sequence “laapsd”, i.e.,p; = p;, Or &t > 4.
We need to prove that the probability of either case is leas ¢h We focus on the first case; the
second one is similar.

Assume that there is a sequengeq,, . . . p;_1, ¢;:—1 such that the elements in this sequence are
all distinct, whilep; = p,. If such a sequence exists, we say that the e¥gihiolds. The number
of sequences satisfying is at most\/ﬁw*”, while the probability that the entries corresponding
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procedure FOLDTOBINS(z, B,., B., T, T¢)
Yij = Ti(y/i)By)+rrg(Vii)Bo)+r. 1O (4,7) € [By] X [B],
return 7, the DFT ofy

procedure BAsICESTFREQ(@(T), (), T, IsCol)

w + 0.

Compute/ = {j : > cr |aj”| > 0}.

for j € Jdo
b a/a.
i rouno(gb( )¥) mod /7. > ¢(b) is the phase of.
§ 17](0).

> Test whether the row or column is 1-sparse
if (X,er | — s(w) "7 ==0) then
if IsColthen > whether decoding column or row
W;; < S.

else

for 7 € T'do
o T — s(w')™™

procedure BASlcEXACTZDSFFT(c, k)
T e 2o > We setc > 6
for r € T do
2™ + FOLDTOBINS(z, /7, 1,0, 7).
97 « FOLDTOBINS(z, 1,1/, 7,0).

Z2+0

for t € [C'logn] do > T = {a" : 7€ T}
{@, 3", 5"} < BASICESTFREQ(@'T), o™, T, true).
Z 4 Z+ .
{w,5(D 4"} + BASICESTFREQ(%(D), ("), T, false).
Z4Z+ .

return z

5.2.1: SFT 5.0: Exact 2D Sparse Fourier Transformifer ©(y/n)
to the points in a specific sequence are nonzero is at (hgsh2(—t) = (a/\/n)?*~Y. Thus the

probability of £, is at most

VRV (af )2 = 20D,

Therefore, the probability that one of the evefits. . ., E, .. holds is at mosp 2, a2(-1) =
a*/(1 — a?), which is smaller tham for « small enough. O
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Lemma 5.2.2. The probability that any 1-sparsity test invoked by the athm is incorrect is at
mostO(1/n(c=5)/2),

The proof can be found in Appenclix A.12.

Theorem 5.2.3.For any constanty, the algorithmBASICEXACT2DSFFTusesO(y/n) samples,
runs in timeO(y/nlog n) and returns the correct vectar with probability at leastl — O(«) as
long asa is a small enough constant.

Proof. From Lemma 5.2.1 and Lemrna 5.2.2, the algorithm returnsdhect vectorz with prob-
ability at leastl — O(a) — O(n=(¢7/2) =1 — O(a) for ¢ > 5.

The algorithm uses onl@ (7)) = O(1) rows and columns of, which yieldsO(,/n) samples.
The running time is bounded by the time needed to perfoxfh) FFTs of rows and columns (in
FoLDTOBINS) procedure, and)(log n) invocations of B.SICESTFREQ. Both components take
time O(y/nlogn).

0

5.2.2 Reduction to the Exact Algorithm: & = o(y/n)

Algorithm REDUCEEXACT2DSFFT (SFT 5.1), which is for the case whére= o(y/n), is de-
scribed in Algorithm 5.2.2. The key idea is to reduce the [gabfrom the case wherie= o(/n)
to the case wheré = O(/n). To do that, we subsample the input time domain signbay the
reduction ratioR = a/n/k for some small enough. The subsampled signal has dimension
Vvm x y/m, wherey/m = £. This implies that the probability that any coefficientihis nonzero
isat mostk? x k/n = a®/k = (a*/k) x (k*/a®)/m = k/m, sincem = k?/a®. This means that
we can use the algorithmAICNOISELES2DSFFT in Section 5.2.1 to recovef. Each of the
entries ofz’ is a frequency ir¢ which was folded intar’. We employ the same phase technique
used in Section 5.2.1 to recover their original frequencsitom in z.

The algorithm uses 2 functions:

e REDUCETOBASICSFFT: This folds the spectrum int@(k) x O(k) dimensions and performs
the reduction to BSICEXACT2DSFFT. Note that only thé (%) elements of:” which will be
used in BASICEXACT2DSFFT need to be computed.

e REDUCEEXACT2DSFFT: This invokes the reduction as well as the phase igabmho recover

~

x.

Analysis of REDUCEEXACT 2DSFFT

Lemma 5.2.4. For any constanty, for sufficiently smalk there is a one-to-one mapping of fre-
guency coefficients fromto z’ with probability at leastl — «.

80



procedure REDUCETOBASICSFFT@, R, 7, Tc)
Definex{j = LiRtr, jRtre > With lazy evaluation
return BASICEXACT2DSFFT2/, k)
procedure REDUCEEXACT2DSFFT(, k)
R+ “\k/ﬁ, for some constant < 1 such thatR|/n.
4% + REDUCETOBASICSFFT(z, R, 0,0)
(1% + REDUCETOBASICSFFT(z, R, 1,0)
a(®Y «+ REDUCETOBASICSFFT(z, R,0,1)
Z24+0
L + sup@©®9) N supg ") N supga®Y)
for (¢, m) € Ldo
b, ug1 0)/u£

z<—rouno(q§( ) =) mod/n

A(01 /A(oo
J rounc(gzﬁ( C)%) mod+/n
Zij @é%])

return z

5.2.2: SFT 5.1: Exact 2D Sparse Fourier Transformifer o(y/n)

Proof. The probability that there are at le@shonzero coefficients among ti coefficients inz
that are folded together iff, is at most

2
(15 )rm® < @nppteng =
The probability that this event holds for any of the positions inz’ is at mostma*/k? =
(k?/a?)a*/k* = a® which is less tham for small enoughz. Thus, with probability at least — «
any nonzero coefficient i’ comes from only one nonzero coefficientin O

Theorem 5.2.5.For any constanty > 0, there exists a constamt> 0 such that ift < ¢y/n then
the algorithmREDUCEEXACT2DSFFTusesO(k) samples, runs in timé(k log k) and returns
the correct vectof with probability at leastl — a.

Proof. By Theorem 5.2.3 and the fact that each coefficient’ins nonzero with probability
O(1/k), each invocation of the functionEUCETOBASICSFFT fails with probability at most
a. By Lemma 5.2.4, with probability at least— «, we could recovet: correctly if each of the
calls to REDTOBASICSFFT returns the correct result. By the union bound, the algorRe-
DUCEEXACT2DSFFT fails with probability at most + 3 x a = O(«).

The algorithm use$)(1) invocations of B\SICEXACT2DSFFT on a signal of siz& (k) x
O(k) in addition toO(k) time to recover the support using the OFDM trick. Noting teltulating

the intersectior. of supports take® (k) time, the stated number of samples and running time then

follow directly from Theorem 5.2, 3. ]
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5.3 Algorithm for the General Case

The algorithm for noisy recovery ®8usT2DSFFT (SFT 6.0) is shown in Algorithm 5.3.1. The
algorithm is very similar to the exactly sparse case. It tmkes FFT of rows and columns using
FoLDTOBINS procedure. It then iterates between the columns and rowsyeeng frequencies
in bins which are 1-sparse using the BUSTESTIMATECOL procedure. This procedure uses the
function LOCATESIGNAL from Algorithm 4.3.2 to make the estimation of the frequepogitions
robust to noise.

Preliminaries

Following |25], we say that a matrid satisfies &Restricted Isometry Proper{RIP) of ordert
with constan® > 0 if, for all ¢-sparse vectorg, we havel| Ay||3/||y||3 € [1 —§,1 + J].

Suppose all columnd; of an N x M matrix A have unit norm. Left = max;; |4, - A,| be
thecoherencef A. Itis folklore® that A satisfies the RIP of ordewith the constand = (¢ — 1) .

Suppose that the matrixis anM x N submatrix of theV x N Fourier matrix?', with each the
M rows of A chosen uniformly at random from the rows Bf It is immediate from the Hoeffding
bound that ifA/ = bu?log(N /v) for some large enough constant> 1 then the matrix4 has
coherence at mogt with probability1 — ~. Thus, forM = ©(¢? - tlog N), A satisfies the RIP of
ordert with constanty = 0.5 with probabilityl — 1/N*.

5.3.1 Analysis of Each Stage of Recovery

Here, we show that each step of the recovery is correct wigh probability using the following
two lemmas. The first lemma shows that with very low probgbilhe ROBUSTESTIMATECOL
procedure generates a false negative (misses a frequéalsg) positive (adds a fake frequency)
or a bad update (wrong estimate of a frequency). The secomtideis analogous to Lemma 5.2.2
and shows that the probability that the 1-sparse test fdilnthere is noise is low.

Lemma 5.3.1. Consider the recovery of a column/rgwin ROBUSTESTIMATECOL, whereu and
7 are the results ofFOLDTOBINS on . Lety € CV™ denote thejth column/row ofz. Sup-
posey is drawn from a permutation invariant distributiop = g4 4 yresidue 4 g g90uss \where
M, egupp(yheady |Yi| > L, |yresidue ||, < eL, and y9e*ss is drawn from the,/n-dimensional normal
distribution N¢ (0, 0%1 ;) with standard deviatiom = eL/n'/* in each coordinate on both real
and imaginary axes. We do not require thgt®, y"4c and 9 are independent except for
the permutation invariance of their sum.

Consider the following bad events:

e False negativesupp(y™*¢) = {i} and RoBUSTESTIMATECOL does not update coordinate
e False positive ROBUSTESTIMATECOL updates some coordinatébut supp(y"<?) # {i}.

e Bad updatesupp(y"“?) = {i} and coordinate is estimated by with ‘b — yhead] > || yresidue]|, 4

lolg logn elL.
V logn

3t is a direct corollary of Gershgorin’s theorem applied ity & columns ofA.
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procedure ROBUSTESTIMATECOL(u, v, T, T, IsCol, J, Ranks)
w <+ 0.

S« {} > Set of changes, to be tested next round.

for j € Jdo
continue if Rankg(IsCol, j)] > log log n.
i < LOCATESIGNAL (a(™), T")
> Procedure from Algorithr 4.3.29(log? n) time
a < median e ¢ @] (W)™,
continueif |a| < L/2
> Nothing significant recovered
continueif ¥, ¢ |47 — a(w')""'|? > L*|T| /10
> Bad recovery: probably not 1-sparse
b <+ mean e 4] (W)™
if IsColthen > whether decoding column or rgw
1/1\}1"]' <~ b.
else
wj,; < .
S« Su{i}.
Ranks(1 — IsCol, 7)] += Ranks(IsCol, j)].
for e TU T do
07 a7 — b))
@(7') @i(T) _ b(w/)fﬂl
return w, u, v, S
procedure ROBUST2DSFFT(, k)
T, T C [vn],|T| = [T'] = O(log n)
for e TU T do
a7 < FOLDTOBINS(z,/n, 1,0, 7).

97 < FOLDTOBINS(z,1,/n, 7,0).

z2+0
R« 11xlv7] > Rank of vertex (iscolumn, index)
Seol < [/1] > Which columns to test

for t € [C'logn] do
{W, U, v, Spou } < ROBUSTESTIMATECOL(u, v, T, T',true, S, R).

Z+ Z+ w.
Srow  [v/n]if t =0 > Try each row the first time
{w, 0,1, Sep;} < ROBUSTESTIMATECOL(D,u, T, T’ false S,,., R).
2+ Z+w.
return z

5.3.1: SFT 6.0: General 2D Sparse Fourier Transfornk fer©(y/n)
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For any constant and ¢ below a sufficiently small constant, there exists a distidsuover
setsT', T' of sizeO(log n), such that as a distribution overand 7', 7’ we have

e The probability of a false negative 1g log® n.
e The probability of a false positive ig/'n°.
e The probability of a bad update i/ log® n.

The proof can be found in Appenclix A.13.

Lemma5.3.2.Lety € C™ be drawn from a permutation invariant distribution with> 2 nonzero
values. Suppose that all the nonzero entrieg bave absolute value at least ChooseT' C [m]
uniformly at random witht := |T| = O(c®log m).

Then, the probability that there existsjawith ||y/'|lo < 1 and

15 =) 2ll2 < eL?t/n

is at mostc?(—<-)¢~2 whenevek < 1/8.

m—r

Proof. The proof can be found in Appencix A.14. ]

5.3.2 Analysis of Overall Recovery

Recall that we are considering the recovery of a signalz* + @ € CV"*vV", wherez* is drawn
from the Bernoulli model with expectdd= a/n nonzero entries for a sufficiently small constant
a, and@ ~ N¢(0,0%1,) with o = eL\/k/n = ©(eL/n'/*) for sufficiently smalle.

It will be useful to consider a bipartite graph representatiy of z*. We construct a bipartite
graph with,/n nodes on each side, where the left side corresponds to rodvsharright side
corresponds to columns. For eaghj) € supp(z*), we place an edge between left nadand
right nodej of weightz*; ;).

Our algorithm is a “peeling” procedure on this graph. Itatess over the vertices, and can with
a “good probability” recover an edge if it is the only incidexige on a vertex. Once the algorithm
recovers an edge, it can remove it from the graph. The algontill look at the column vertices,
then the row vertices, then repeat; these are referred stages Supposing that the algorithm
succeeds at recovery on each vertex, this gives a canomdsl to the removal of edges. Call this
theideal ordering.

In the ideal ordering, an edgas removed based on one of its incident vertice$his happens
after all other edges reachable franwithout passing through are removed. Define thank of
v to be the number of such reachable edges, and eank rank(v) + 1 (with rank(v) undefined if
v is not used for recovery of any edge).

Lemma 5.3.3.Let ¢, a be arbitrary constants, and be a sufficiently small constant depending on
¢, a. Then withl — « probability every component i@ is a tree and at most/ log® n edges have
rank at leastiog log n.
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Proof. Each edge of7 appears independently with probabilityn = a/+/n. There are at most
\/ﬁt cycles of lengtht. The probability that any cycle of lengthexists is at most‘, so the chance
any cycle exists is less thard /(1 — a?) < a/2 for sufficiently smalla.

Each vertex has expected degree: 1. Exploring the component for any vertexis then a
subcritical branching process, so the probability thiatcomponent has size at ledsg log n is
1/log* n for sufficiently smalla. Then for each edge, we know that removing it causes each of it
two incident vertices to have component size less thaitog n — 1 with 1 — 1/ log® n probability.
Since the rank is one more than the size of one of these comfmtiee rank is less thdng log n
with 1 — 2/1og® n probability.

Therefore, the expected number of edges with rank atlegkig n is 2k / log® n. Hence, with
probability1 — «/2 there are at mostl /a)4k / log® n such edges; adjustinggives the result. [

Lemma 5.3.4.LetROBUST2DSFFT’be a modifiedRoBusT2D SFFTthat avoids false negatives
or bad updates: whenever a false negative or bad update wouwddroan oracle corrects the
algorithm. With large constant probabilitRoBusT2DSFFT recoversz such that there exists a
(k/log® n)-sparsez’ satisfying

12— 2 — 2|5 < 60°n.

Furthermore, onlyO(k/log® n) false negatives or bad updates are caught by the oracle.

Proof. The proof can be found in Appenclix A.15 O]

Lemma 5.3.5.For any constant > 0, the algorithmRoBuUsT2D SFFTcan with probabilityl — o
recoverz such that there exists (@& /log® ' n)-sparse?’ satisfying

|z -2 — 7|5 < 60°n
using O(k log n) samples and)(k log® n) time.

Proof. To do this, we will show that changing the effect of a singlkttaROBUSTESTIMATECOL
can only affeclog n positions in the output of 88UusT2DSFFT. By Lemma 5.3.4, we can, with
large constant probability, turndB8usT2DSFFT into RBUST2DSFFT’ with only O(k/log® n)
changes to calls to ®BUSTESTIMATECOL. This means the outputs ofdBUST2DSFFT and of
RoBUST2DSFFT’ only differ inO(k/log®™' n) positions.

We view ROBUSTESTIMATECOL as trying to estimate a vertex. Modifying it can change from
recovering one edge (or none) to recovering a different édgaone). Thus, a change can only
affect at most two calls to ®BUSTESTIMATECOL in the next stage. Hence instages, at most
271 calls may be affected, so at m@stedges may be recovered differently.

Because we refuse to recover any edge with rank at leggig n, the algorithm has at most
loglog n stages. Hence at moktg n edges may be recovered differently as a result of a single
change to RBUSTESTIMATECOL. O

Theorem 5.3.6.0ur overall algorithm can recovet’ satisfying
12 = 2|3 < 120%n + [|2])3/n°
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with probability 1 — « for any constants;, o« > 0 in O(klogn) samples and)(klog® n) time,
wherek = a+/n for some constant > 0.

Proof. By Lemma 5.3.5, we can recover ar(k)-sparse such that there exists dh/log® ' n)-
sparsez’ with
|2 — 2 — 2|3 < 60°n.
with arbitrarily large constant probability for any consta using O (k log® ) time andO (k log n)
samples. Then by Theorem 4.4.1, we can recovet ia O(klog®n) time and O(klog* ¢ n)
samples satisfying
12 =2 = 2|3 < 120%n + ||2[|2/n°

and hence’ := 7z + 2’ is a good reconstruction far. O
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Chapter 6

Numerical Evaluation

In this chapter, we simulate and numerically evaluate thopmance of some of our Sparse
Fourier Transform algorithms.

6.1 Implementation

We implement the following algorithms: SFT 1.0, SFT 2.0, andgriant of SFT 3.0 which we will
refer to as SFT 3.1. We implement them in C++ using the StanBamtplate Library. The code
can be found on the Sparse Fourier Transform webpage:/imtpy. sparsefft.com.

We evaluate the performance and compare the following spe@mentations:

1) SFT 1.0 This algorithm was presented in Chaptar 3 and has a runtim¥lof; n+/nk log n).
2) SFT 2.0 This algorithm was also presented in Chapter 3 and has arreiafiO (log n</nk?log n).

3) SFT 3.1! A variant of SFT 3.0 which was presented in Chapter 4 and hastinme of
O(klogn).

4) AAFFT 0.9 [87]: This is an implementation of the prior sublinear algon which had the
fastest theoretical [60] and empirical runtime [89] befote SFT algorithms. The algorithm
has a runtime of) (% log®(n) log(n/k)) for somec > 2.

5) FFTW 3.2.2[54]: This is the fastest public implementation for the FRJasithm which has a
runtime of O(n log n).

6) FFTW Optimized [54]: This is an optimized version of FFTW that requires poggssing,
during which the algorithm is tuned to a particular machiaediware. In contrast, our current
implementations of SFT algorithms do not perform hardwaezgic optimizations.

1In this variant, an aliasing filter is used in the very firstétgon of the algorithm followed by two Gaussian flat
window filters as opposed to only using Gaussian filters in ST
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6.2 Experimental Setup

The test signals are generated in a manner similar to th&¢ih For the runtime experiments,
k frequencies are selected uniformly at random frorhand assigned a magnitude bfand a
uniformly random phase. The rest are set to zero. For theatode to noise experiments, the test
signals are generated as before but they are combined wditivedvhite Gaussian noise, whose
variance varies depending on the desired SNR. Each pointigrdphs is the average over 100
runs with different instances of test signals and differestances of noise. In all experiments, the
parameters of SFT 1.0, SFT 2.0, SFT 3.1 and AAFFT 0.9 are arsasthat the averagé error in
the absence of noise is betwedT” and10~® per non-zero frequen&yinally, all experiments are
run on a Dual Core Intel 3.0 GHz CPU running Ubuntu Linux 10.0thwicache size of 6144 KB
and 8 GB of RAM.

6.3 Numerical Results

6.3.1 Runtime vs. Signal Size

In this experiment, we fix the sparsity parameter 50 and report the runtime of the compared
algorithms for 12 different signal sizes : 2'4,2'5 ... 226, We plot, in Figure 6-1, the mean,
maximum, and minimum runtimes for SFT 1.0, SFT 2.0, SFT 3AFRT 0.9, FFTW, and FFTW
OPT, over 100 runs. The relative runtimes of AAFFT 0.9 and WFare consistent with those
reported in [89](see Figure 3.1).

As expected, Figure 6-1 shows that the runtimes of SFT 1.0, 56 and FFTW are approx-
imately linear in the log scale as a functionafHowever, the slope of the lines for SFT 1.0 and
SFT 2.0 s less than the slope for FFTW, which is a result af gwé-linear runtime. On the other
hand, SFT 3.1 and AAFFT 0.9 appear almost constant in thedalg sis a function of. which is
also expected since they only depend logarithmically. oRurther, the figure shows that for signal
sizesn > 16384, SFT 3.0 has the fastest runtime. It is faster than both ntwiaf FFTW and is
400x faster than AAFFT 0.9. SFT 1.0 and SFT 2.0 are faster than FFarWw > 100,000 and
faster than AAFFT fom < 2%¢. Overall, for a large range of signal sizes the SFT algoritinave
the fastest runtime.

6.3.2 Runtime vs. Sparsity

In this experiment, we fix the signal sizerto= 2?2 (i.e.4,194,304) and evaluate the runtime verses

the number of non-zero frequenciesFor each value of, the experiment is repeated 100 times.

Figure 6-1 illustrates the mean, maximum, and minimum rmes for the compared algorithms.
Figure 6-1 shows that SFT 1.0 and SFT 2.0 have a faster rurthare basic FFTW for

up to 2000 and 2200, respectively. When compared to the optimized FFTW, thesongsvalues

become500 and 1000. Thus, SFT’s crossing values are arougid. In comparison, AAFFT 0.9

2For the values of: andn that are close to the ones considerec! in [89], we use the p#eesrtherein. For other
ranges, we follow the guidelines in the AAFFT 0.9 documeate|87].
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is faster than FFTW variants farbetweenl 00 and200. Further, the relative runtimes of AAFFT

0.9, and FFTW 3.2.2 are close to those reported in [89](EiguR). The figure also shows that
SFT 3.1 has the fastest runtime among all algorithms. Itn®at two orders of magnitude faster
than SFT 1.0 and SFT 2.0 and more th&n x faster than AAFFT. Finally, FFTW has a runtime
of O(nlog(n)), which is independent of the number of non-zero frequentjess can be seen

in Figure 6-1. Thus, as the sparsity of the signal decreasesk( increases), FFTW eventually
becomes faster than all SFT and AAFFT. In fact, the FFTW waltdame faster than SFT 3.1 for
k > 131072. Nonetheless, the results show that in comparison with dlseeét prior sublinear

algorithm [89], the SFT algorithms significantly extend thage of applications for which sparse
approximation of Fourier transform is practical.

6.3.3 Robustness to Noise

Last, we would like to check SFT’s robustness to noise. Tiuescompare the performance of
SFT 1.0 and SFT 2.0 against AAFFT 0.9, for different levelsmbite Gaussian noise. For this
experiment, we exclude SFT 3.1 since it only works for exasplarse signals. We fix = 222 and

k = 50, and experiment with different signal SNR®Ve change the SNR by changing the variance
of the Gaussian noise. For each noise variance, we run neudtyperiments by regenerating new
instances of the signal and noise vectors. For each run, wpuwe the error metric per as the
averageL, error between the output approximatidoh(restricted to itsk largest entries) and the
bestk-sparse approximation dfreferred to ag;:

1
AverageL, Error = — Y |3/ — 9.

0<i<n

Figure 6-3 plots the average error per non-zero frequencgkd 1.0, SFT 2.0, and AAFFT
0.9. The figure shows that all three algorithms are stableundise. Further, SFT variants appear
to be more robust to noise than AAFFT 0.9.

3The SNR is defined aSNR = 201log lzllz \yherez is ann-dimensional noise vector.

I[z[2
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Figure 6-3:Robustness to Noise Resultsy(= 2?2,k = 50). The figure shows that all three
algorithms are stable in the presence of noise but the SFFitdms have lower errors.
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Chapter 7
GHz-Wide Spectrum Sensing and Decoding

7.1 Introduction

The rising popularity of wireless communication and theeptial of a spectrum shortage have mo-
tivated the FCC to take steps towards releasing multiple ©forddynamic spectrum sharing 48].
The government’s interest in re-purposing the spectrurstiaring is motivated by the fact that the
actual utilization of the spectrum is sparse in practice.irgtance, Figure 7-1 from the Microsoft
Spectrum Observatory [123] shows that, even in urban al@&ge, swaths of the spectrum remain
underutilized. To use the spectrum more efficiently, lastrythe President’s Council of Advisors
on Science and Technology (PCAST) [174] has advocated dynsimairing of much of the cur-
rently under-utilized spectrum, creating GHz-wide spattsuperhighways “that can be shared by
many different types of wireless services, just as vehistege a superhighway by moving from
one lane to another.”

Motivated by this vision, this chapter presents BigBand, &netogy that enables realtime
GHz-wide spectrum sensing and reception using low-powdinsa similar to those in WiFi de-
vices. Making GHz-wide sensing€. the ability to detect occupancy) and receptioe. (he ability
to decode) available on commodity radios enables new agijalits:

e In particular, realtime GHz sensing enables highly dynaspectrum access, where secondary
users can detect short sub-millisecond spectrum vacaactekverage them, thereby increas-
ing the overall spectrum efficiency [16].

e Further, a cheap low-power GHz spectrum sensing techn@ngkles the government and the
industry to deploy thousands or such sensors in a metrapaditea for large-scale realtime
spectrum monitoring. This will enable a better understagdf spectrum utilization, iden-
tification and localization of breaches of spectrum poleyd a more-informed planning of
spectrum allocation.

e Beyond sensing, the ability to decode signals in a GHz-widellenables a single radio to
receive concurrent transmissions from diverse parts opleetrum. This would enable future
cell phones to use one radio to concurrently receive BlubtabR.4 GHz, GSM at 1.9 GHz,
and CDMA at 1.7 GHz.
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Figure 7-1:Spectrum Occupancy:The figure shows the average spectrum occupancy at the Mi-
crosoft spectrum observatory in Seattle on Monday JanudyyQ13 during the hour between

10 am and 11 am. The figure shows that between 1 GHz and 6 GHzgp#utrum is sparsely
occupied.

Realtime GHz signal acquisition, however, is challenginy. &ample, existing methods for
spectrum sensing, like those used in the Microsoft specthservatory [123], do not work in
realtime. They rely on sequential hopping from one chanmé¢hé next, acquiring only tens of
MHz at a time [153, 1€9]. As a result, each band is monitordd occasionally, making it easy to
miss short lived signalse(g, radar).

The key difficulty in capturing GHz of bandwidth in realtimeemss from the need for high-
speed analog-to-digital converters (ADCs), which are gpptbwer hungry, and have a low bit
resolution [63, 131]. Compare typical low-speed ADCs used iRi\&t cellular phones with the
very high speed ADCs needed to capture GHz of bandwidth. A 183sMDC, like in Wi-Fi
receivers, costs a few dollars, consumes a few milli Wattd, lzas a 12 to 16-bit resolution [40,
131, 163]. In contrast, a high speed ADC that can take maltida-samples per second may cost
hundreds of dollars, consume multiple orders of magnitudespower, and have only 6 to 8-bits
resolution [40, 68, 131].

In this chapter, we explore how one can achieve the best bfbotlds. Specifically, we would
like to capture GHz of spectrum but using only few ADCs that gkenthe signal at tens of MS/s.

We introduce BigBand, a technology that can acquire GHz ofadigsing a few (3 or 4) low-
speed ADCs. BigBand can do more than spectrum sensing — the adtidetecting occupied
bands. It can also decode the signal (i.e., obtain the | andr@ponents). To achieve its goal,
BigBand builds on the Sparse Fourier Transform algorithmsceed in Part | of this thesis, to
recover the wireless spectrum using only a small subsetropks —i.e., it can recover GHz of
spectrum without sampling it at the Nyquist rate.

Some past work has proposed using compressive sensinguioeaGdHz signals at sub-Nyquist
rate [103, 151, 172, 134]. BigBand builds on this work but dgfieom it substantially. Approaches
based on compressive sensing require random sampling sfghal which cannot be done sim-
ply by using standard low-speed ADCs. It needs analog mixingyguist rates [103, 184] and
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expensive processing to recover the original signal. Sudesign is quite complex and could
end up consuming as much power as an ADC that samples at thadtlygte [1, 2]. Like the
compressive-sensing approaches, BigBand can acquire aamdedignal without sampling it at
the Nyquist rate. Unlike compressive sensing, however, BigBdoes not need analog mixing
or random sampling and can work using commodity radios asmaldsird low-speed ADCs. Fur-
ther, it computes the Fourier transform of a sparse sigrsé¢fdhan the FFT, reducing baseband
processing.

We have built a working prototype of BigBand using USRP softwaios. Our prototype
uses three USRPs, each of which can capture 50 MHz bandwigtiodoice a device that captures
0.9 GHz +.e,, 6x larger bandwidth than the digital bandwidth of the three USB&mnbined. We
have used our prototype to sense the spectrum between 2 GHz2uGHz, a 0.9-GHz stretch
used by diverse technologies [123]. Our outdoor measuremewreal that, in our metropolitan
aree! the above band has an occupancy of 2-5%. These results wifiedvasing a spectrum
analyzer are in sync with similar measurements conductethat locations [12:3]. We further use
our prototype to decode 30 transmitters that are simultasigdrequency hopping in a 0.9 GHz
band, hence demonstrating that BigBand decodes the sigoalsnly senses their power.

Finally, we have extended BigBand to perform spectrum sengsiagdecoding) even when
the spectrum utilization is not sparse. To do so, we levethgadea that even if the spectrum
itself is densely occupied, only a small fraction of the ¢peu is likely to change its occupancy
over short intervals of a few milliseconds. We build on thésic idea to sense densely occupied
spectrum using sub-Nyquist sampling. We also evaluate esigd empirically showing that it can
detect frequency bands that change occupancy even whepebisn is 95% occupied.

7.2 Related Work

BigBand is related to signal acquisition via digital and agalompressive sensing [103, 124, 125,
151, 172, 184, 185]. However, compressive sensing need®maisampling and analog mixing
at Nyquist rates [103, 125, 184]. These approaches cannogiitiaising commodity radios and
ADCs with regular sampling; they require a custom design anddcend up consuming as much
power as an ADC that samples at the Nyquist rate [1, 2]. Furtbee, compressive sensing does
not directly compute the spectrum representation of theasignd still needs to perform heavy
computation to recover the spectrum, which is power consgmi

BigBand is also related to theoretical work in signal progegsin co-prime sampling [175,
180, 181]. In [180, 1&1], co-prime sampling patterns arkzetl to sample sparse spectrum. These
methods however require ADCs with co-prime sampling patterns, whekes the number of
occupied frequencies. In contrast, using the Sparse FolUrasform allows us to use only a
constant small number of ADCs. Our system is further impleeand shown to work in practice.
In [175], co-prime sampling is used to sample linear antearnays. This work however assumes
the presence of a second dimension where signals can beséutipled and cross-correlated and
hence cannot be used for spectrum acquisition.

IMIT campus, Cambridge MA, USA.
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Also relevant to our work is the theoretical work on using ticolset sampling to capture the
signals in a wideband sparse spectrum with a small numbewddppeed ADCs [79, 178]. However,
in order to recover the original signals from the samplesséttechniques require prior knowledge
of the locations of occupied frequencies in the spectrumbate are not useful for spectrum
sensing. In contrast, our approach recovers both the totatbf the occupied frequencies and the
signals in these frequencies and thus can be used for battremesensing and decoding.

Some proposals for test equipment reconstruct widebamadpesignals by undersampling [159,
173]. These approaches however assume that the signaladiped.e., the same signal keeps re-
peating for very long time — which allows them to take one danaluring each period until all
samples are recovered and rearranged in the proper ordaugfitthis requires one low speed
ADC, itis only applicable to test equipment where the sameadits repeatedly transmitted [1.73].

There is significant literature about spectrum sensing.tMbshis work focuses on narrow-
band sensing [113, 149, 187]. It includes techniques forddiieig the signal’s energy ['13], its wave-
form [187], its cyclostationarity [64], or its power varian [149]. In contrast, we focus on wide-
band spectrum sensing, an area that is significantly ledsrexpp A recent system called Quick-
Sense [1€6] senses a wideband signal using a hierarchy tafgafikers and energy detectors.
BigBand differs from QuickSense in that it can recover thealigobtain the | and Q components)
as opposed to only detecting spectrum occupancy. Secontigialy utilized spectrumife. not
sparse), the approach in [1.86] reduces to sequentiallyngoguthe spectrum whereas BigBand’s
extension for the non-sparse case provides a fast sensictyamism.

Finally, the proposed research complements the geo-totdttabase required by the FCC for
identifying the bands occupied by primary users (e.g., thestations in the white spaces). The
database, however, has no information about frequencmsgpad by secondary and unlicensed
users in the area. Also, due to the complexity of predictirgppgation models, the database pro-
vides only long-term predictions, and can be inaccuratejqodarly with dynamic access pat-
terns [165, 48].

7.3 BigBand

BigBand is a receiver that can recover sparse signals witiNsagjoist sampling using low-power
commodity radios. BigBand can do more than spectrum sensimg action of detecting occupied
bands. It provides the details of the signals in those bdisdar(d Q’s of wireless symbols), which
enables decoding those signals.

BigBand uses the Sparse Fourier Transform to acquire spags&apising low speed ADCs.
In this section, we explain how BigBand adapts the Sparse &olransform for the application of
spectrum acquisition. We useandx to denote a time signal and its Fourier transform respdgtive
We also use the terms: thvalueof a frequency and itpositionin the spectrum to distinguisky
andf. BigBand discovers the occupied frequency positibasid estimates their valugs. Once
X is computed, it can recover the time sigradnd decode the wireless symbols.

Following the Sparse Fourier Transform framework set intiacl.1.2, BigBand’s design
has three components: frequermcketizationestimation andcollision resolution Below we re-
explain these components in the context of wireless sigmaligition and processing. A theoretical
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analysis of BigBand’s Sparse Fourier Transform algorithriofeé immediately from Chapter.

7.3.1 Frequency Bucketization

BigBand starts by hashing the frequencies in the spectrumbmtets. Since the spectrum is
sparsely occupied, many buckets will be empty and can bdguigrarded. BigBand then focuses
on the non-empty buckets, and computes the values of thedneies in those buckets in what we
call the estimation step.

In order to hash frequencies into buckets, BigBand uses thsimagj filter described in Sec-
tion 1.1.2. Recall that, ib is a sub-sampled version of the wireless sigaalf bandwidthB W/,
i.e, b; = x,, wherep is the sub-sampling factor, thel, the FFT ofb is an aliased version of,

i.e.
p—1

b; = Z Xitm(BW /p) (7.1)
m=0

Thus, the aliasing filter will hash frequencies equally sghoy an intervaBWW /p to the same
bucket using the hashing functian= f mod BW /p. Further, the value in each bucket is the
sum of the values of only the frequencies that hash to thediakshown in Equation 7.1. Most
importantly, aliasing fits naturally to the problem of spaat acquisition since it can simply be
implemented by sampling the signal using a low-speed AD@elahan the Nyquist rate.

Now that we hashed the frequencies into buckets, we candgegehe fact that the spectrum
of interest is sparse and hence most buckets have noise asdmal. BigBand compares the
energy (.e., the magnitude square) of a bucket with the receiver’s nieigel and considers all
buckets whose energy is below a threshold to be empty. Itfib@rses on the occupied buckets
and ignores empty buckets.

7.3.2 Frequency Estimation

Next, for each of the occupied buckets we want to identifychHrequencies created the energy
in these buckets, and what are the values of these frequetioree can do that, we then have re-
covered a complete representation of the frequencies witkzero signal valuesg., we acquired
the full signal in the Fourier domain.

Recall that our spectrum is sparse; thus, as mentioned rearhen hashing frequencies into
buckets many buckets are likely to be empty. Even for the piecLbuckets, many of these buckets
will likely have a single non-zero frequency hashing interth and only a small number will
have a collision of multiple non-zero (or occupied) freqeies. In the next section, we present a
mechanism to detect whether a bucket has a collision anélzeesoch collisions. In this section,
we focus on buckets with a single non-zero frequency anchagti the value and the position of
this non-zero frequency.

Recall that if there is a single occupied frequency coefficierthe bucket, , then the value
of this occupied frequency is the value of the bucket. Sdiemintly, the value of a bucket after

2Note that while the algorithms in Chapter 5 are for 2D signide analysis holds due to the equivalence between
the two-dimensional case and the one-dimensional caseewhsra product of different prime powers [£9, 90].
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aIiasing,BZ- is a good estimate of the value of the occupied frequeticin that bucket, since
all other frequencies in the bucket have zero signal valudy (noise). Although we can easily
find the value of the non-zero frequency in a bucket, we stilhdt know its frequency position
f, since aliasing mapped multiple frequencies to the samkebuBRecall from Section 1.1.2, to
computef, we can use th@hase-rotation propertyf the Fourier transform, which states that
a shift in time domain translates into phase rotation in tlegjdency domain. We perform the
process of bucketization again, after shifting the inpgbal by7. Since a shift in time translates
into phase rotation in the frequency domain, the value ofoilneket of changes frorb, = %;
to BET) = X; - 2”7 Hence, using the change in the phase of the bucket, we caméstour
frequency of interest and we can do this for all buckets tbatat have collisions.

Two points are worth noting:

e First, recall that the phase wraps around ev@&ry Hence, the value of has to be small to
avoid the phase wrapping around for large valuet &ri particular,r should be on the order of
1/BW whereBW is the bandwidth of interest. For example, to acquire one GHpectrum,
7 should be on the order of a nanosec2nd.

e Second, to sample the signal withrashift, we need a second low-speed ADC that has the
same sampling rate as the ADC in the bucketization step base&vbkamples are delayed hy
This can be achieved by connecting a single antenna to two ARQ®g different delay lines
(which is what we do in our implementation). Alternativeby)ye can use different delay lines
to connect the clocks to the two ADCs.

7.3.3 Collision Detection and Resolution

We still need to address two questions: how do we distingilistbuckets that have a single non-
zero frequency from those that have a collision? and in tee o&a collision, how do we resolve
the colliding frequencies?

Collision Detection

Again we use thghase rotationproperty of the Fourier transform to determine if a collisio
has occurred. Specifically, if the bucket contains a single-rero frequencyi,e., no collision,
then performing the bucketization with a time shiftauses only a phase rotation of the value in
the bucket but the magnitude of the bucket does not change with or without the time shift,
Ib;|| = b = |x¢||. In contrast, consider the case where there is a collisitwds, say,
two frequencies’ and f’. Then the value of the bucket without a time-shifthis = Xf + Xpr
while its value with a time-shift of is b\ = X, - e2™/7 + %} - 277, Since the colliding
frequencies rotate by different phases, the overall madeaibf the bucket will change. Thus, we
can determine whether there is a collision or not by compathie magnitudes of the buckets with
and without the time-shift. Note that even if one occasilyrfalsely detects a collision when there

3In fact, one can prove a looser version of this constraintretarger are fine. Formally, for- larger thanl / B,
the FFT window size must be a non-integer multiple-of

98



is a single frequency, BigBand can still correct this erroiisTi because the collision resolution
step described next will estimate the values of the preswuokliding frequencies to zero.

Collision Resolution

To reconstruct the full spectrum, we need to resolve thésomtis +.e., for each non-zero frequency
in a collision we need to estimate its valtie and positionf. We present two approaches for
resolving collisions which may also be combined in case peesum is less sparse.

A. Resolving Collisions with Co-prime Aliasing Filters

One approach to resolve collisions is to bucketize the specmultiple times using aliasing
filters with co-prime sampling rates. As described in Sextid.2, co-prime aliasing filters guaran-
tee (by the Chinese remainder theorem) that any two freqegticat collide in one bucketization
will not collide in the other bucketizations. Hence, we casalve collisions by iterating between
the two co-prime bucketizations. We can estimate the freges that did not collide from the first
bucketization and subtract them from the colliding buckethe second bucketization. This frees
some of the colliding frequencies in the second bucketimaaind allows us to estimate them. We
can then go back to the first bucketization and subtract thesdy estimated frequencies from
the buckets where they collided. We can keep iterating wsihave recovered all the occupied
frequencies.

Thus, by using co-prime aliasing filters to bucketize andhtieg between the bucketizations
—i.e, estimating frequencies from buckets where they do notdeoBnd subtracting them from
buckets where they do collide— we can recover the spectrims.sliggests that to capture a spec-
trum bandwidthB W, we can use two ADCs that sample at raBd% /p, and BW / p, wherep, and
po are co-prime. For example, to recover a 1 GHz spectrum, wesaa 42 MHz ADC [40] along
with a 50 MHz ADC. The combination of these two ADCs can captubardwidth ofl.05 GHz
becausel2 MHz = 1.05 GHz/25 and50 MHz = 1.05 GHz/21, where 21 and 25 are co-prime.
Note that we also repeat each of these co-prime bucketizatith a time shift (as explained in
Sectiori 7.3.2, which requires a total of 4 low-speed ADCs.

B. Resolving Collisions without Co-prime Aliasing Filters

Co-prime aliasing filters are an efficient way to resolve sahs, but they are not necessary.
Here, we show how to resolve collisions while still using ADi@at sample at the same rate. This
means that one can use one type of ADCs for building the whalesy This makes it possible to
build BigBand using only software radios like USRPs [47].

We use one type of aliasing filter. However, we perform it farenthan twice using multiple
different time shifts. To see how this can help resolve salhis, consider again the case where two
frequencieg andf’ collide in a bucket. If we use two time shiftg andr,, we get three values for
each bucket. For the bucket whegrandf’ collide, these values are:

B’L = Xy ‘|—)/if/
b — Rp - eI g P (7.2)

A~ . A~ ,./
= Ry 2T g, 2R
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If we know the positions of andf’, the above becomes an overdetermined system of equations
where the only unknowns asg, X;. Since only few frequencies hash into each bucket, there is
a limited number of possible values pfand f’. For each of these possibilities, the above over-
determined system can be solved to fiyd x;. Hence, we can solve overdetermined system for
the possiblef, /') pairs and choose the pair that minimizes the mean squame \fhile the above
does not guarantee that the solution is unique, in casepteufiairs (,f’) satisfy the equations,
BigBand can detect that event and report to the user that tevalf these frequencies remain
unresolved. Our empirical results (in Secticn 7.7.3) show however tlatgdractical spectrum
sparsity (which is about 5%) 3 shifted bucketizations ai@ugh to uniquely resolve the colliding
frequencies.

We note that though this method requires more digital coatpmrt, we only need to do this
for the few buckets that have a collision, and we know the remab collisions is small due to
the sparsity of the spectrum. We also note that this methadbeacombined with the co-prime
approach to deal with less sparse spectrum. In this caseisesethis method to resolve collisions
of two frequencies while iterating between the co-primefgt

7.4 Channel Estimation and Calibration

The earlier description of BigBand assumes that the diffed&(€s can sample exactly the same
signal at different time-shifts. However, because the agexperience different channels, they
will be scaled differently and the ADCs will not be able to sdengxactly the same signal.

To better understand this problem, let us consider the chseawe resolve collisions without
the co-prime sub-sampling. In this case, we will have 3 ADCshesampling a signal that is
delayed by a time shift. In this case, consider a non-zerufacyf whose value i%;. If f hashes
to bucket: and does not collide, then the value of the bucket at eacheoAIICs can be written

as: ~
bi = k() M) %
bI™ = hu(f) - half) - %y - 2T (7-3)
b= hulf) - hs(f) Rp - €I

whereh,, (f) is the channel on the wireless mediulmn(f), ho(f), hs(f) are the hardware channels
on each of the radios, andf) indicates that these parameters are frequency dependergaiV
ensure that,, (f) is the same in all three bucketizations by connecting the RRténds to the
same antenna. As a result, (f) cancels out once we take the ratib§;" /b, andb™ /b, of the
buckets. However, the hardware channels are differenhéodifferent bucketizations. We need to
estimate them and compensate for them in order to perforquérmcy estimation and also resolve
the collisions.

Furthermore, though it is simple to create time-shifts leewthe three ADCs as explained in
Sectior 7.3.2, we need to know the values of these timesshift, in order to perform frequency

“Note that theoretically, for a collision d&ffrequencies2k samples can guarantee a unique solution in the absence
of noise.
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Figure 7-2:Phase Rotation vs. FrequencyThe figure shows that the phase rotation between the
3 USRPs is linear across the 900 MHz frequency spectrum anbecased to estimate the time
shifts.
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Figure 7-3:Hardware Channel Magnitude: The relative channel magnitudés (f)/h2(f)| and
|hi(f)/hs(f)| are not equal to 1 and are not flat across the frequency spedttence, we need to
compensate for these estimates to be able to detect andcsdiigeons.

estimation based on phase rotation. Hence, we also need twalimate these time-shifts.

7.4.1 Estimating the Channels and Time-Shifts

To estimate the channels and the time shifts, we divide tted bandwidth BV that BigBand
captures intg consecutive chunks. We then transmit a known signal in eaahlg one by one.
Since we only transmit in one chunk at a time, there are nasamiis at the receiver after aliasing.
We then use Equation 7.3 to estimate the ratigg) - e/ /h,(f) andhs(f) - 2™/ /by (f) for
each frequency in the spectrum.

Now that we have the ratios, we need to complutg )/, (f) for each frequency, and the
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delayr;. We can estimate this as follows: Both the magnitude and pbiatbe hardware channel
ratio will be different for different frequencies. The mdgule differs with frequency because
different frequencies experience different attenuatioithe hardware. The phase varies linearly
with frequency because all frequencies experience the si@fagr, and the phase rotation of a
frequencyf is simply2x f 1. We can therefore plot the phase of the ratio as a functioreqgtiency,
and compute the delay from the slope of the resulting line.

Figure 7-2 shows the phase result of this estimation peddrion the USRP software ra-
dios used in our implementation described in Section 7.6exgected, the phase is linear across
900 MHz. Hence, by fitting the points in Figure 7-2 to a line vem @stimate the shifts, » and
the relative phases of the hardware channiets £h,(f)/ho(f) and Zhy(f)/hs(f)). Figure 7-3
also shows the relative magnitudes of the hardware chaondtse USRPsie. | (f)/he(f)| and
|hi(f)/hs(f)]) over the 900 MHz between 3.05 GHz and 3.95 GHz. These haedetemnels and
time shifts are stable. For our implementation, we estithttiem only once at the set up time.

7.5 Differential Sensing of Non-Sparse Spectrum

We extend BigBand’s algorithm to sense a non-sparse speciherkey idea is that although the
spectrum might not be sparse, changes in spectrum usagga@ly sparse, i.e., over short in-
tervals, only a small percentage of the frequencies arel fupeor become occupied. This makes
it possible to estimate the occupancy without sampling tgeas at the Nyquist rate. We refer
to sparse changes as differential sparsity, and call thenekin that deals with such non-sparse
spectrum D-BigBand. We note however that unlike in the caseaeawite spectrum is sparse, in the
non-sparse setting we only perform spectrum sensing butaweat recover the | and Q compo-
nents of the signal. Below we explain how we perform buckétreand estimation in D-BigBand.

7.5.1 Frequency Bucketization

D-BigBand also bucketizes the spectrum using sub-sampliegsilHowever, since the spectrum
is not sparse, it is very likely that all buckets will be oc@mg Thus, D-BigBand tries to detect
changes in the occupancy of frequencies that hash to eakhtsu€o do so, D-BigBand computes
the average power of the buckets over two consecutive tinmelaws 7'W by performing the
bucketization multiple times during each time winc®ince the changes in spectrum occupancies
are sparse, only the average power of few buckets would ehbetyveen the two time windows.
D-BigBand can then focus only on the few buckets where the gegrawer changes.

7.5.2 Frequency Estimation

Now that we know in which buckets the average power has clithmgeeneed to estimate which of
the frequencies in the bucket is the one whose occupancyhaaged. However, we can no longer
use the phase rotation property to estimate these freqegenciresolve their collisions since the

5The number of times D-BigBand can average i$'® /T where T is the FFT window time.
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phase of the bucket now depends on all the frequencies tkhttbahe bucket and not just the
frequency whose occupancy has changed. Thus, to estineatbainging frequencies we are going
to use a different method which we refer to as voting whichinsilar to the voting approach
described in Secticn 1.1..3 and used in Chapter 3. We repebtithetization multiple times while
randomizing which frequencies hash to which buckets. Athet, each bucketization votes for
frequencies that hash to buckets where the power changegLiémcies that get the most number
of votes are picked as the ones whose occupancy has chawogaeddbmize the bucketizations, we
simply use co-prime sub-sampling which as described in@e¢t3.3 guarantees that frequencies
that hash together in one bucketization can not hash togiethiee other bucketizations.

As with any differential system, we need to initialize thatstof spectrum occupancy. However,
an interesting property of D-BigBand is that we can initialize occupancy of each frequency in
the spectrum to unknown. This is because, when we take tferehte in power we can tell
whether the frequency became occupied or it became empegifigally, a negative power dif-
ference implies that the corresponding frequency becanptyersnd a positive power difference
implies that the corresponding frequency became occupiedce, once the occupancy of a fre-
guency changes, we can tell its current state irrespectiig previous state. This avoids the need
for initialization and prevents error propagation.

7.6 A USRP-Based Implementation

7.6.1 Implementing BigBand

As a proof of concept, we implement BigBand using USRP N210 so#wadios [47]. Since
the USRPs use the same ADCs, it is not possible to have co-pubeaanpling rates. Thus, our
implementation relies on resolving collisions without@ame sub-sampling.

We use three USRP N210 radios with the SBX daughterboardshwian operate in the
400 MHz to 4.4 GHz range. The clocks of the three USRPs are synided using an external
GPSDO clock [91]. In order to sample the same signal usinghteee USRPs, we connect the
USRPs to the same antenna using a power splitter but with wfrdgferent lengths in order to
introduce small time-shifts. We also remove the analog lassgdilters on the SBX daughterboards
to allow the USRP’s ADC to receive the entire bandwidth thataibhalog front-end circuitry is
designed for. The analog circuitry of the USRP front-end emeive at most 0.9 GHz, which puts
an upper bound on the digital bandwidth of the system. TheetkiSRP ADCs each samples the
signal at 50 MS/$.Thus, our implementation of BigBand captures a bandwigiti = 900 MHz
using only 150 MS/s.

7.6.2 Implementing D-BigBand

D-BigBand’s frequency estimation relies on using differes¥prime sub-sampling rates and hence
we cannot implement D-BigBand directly on USRPs. Thus, to yehat D-BigBand can sense

6In principle, the USRP ADC can sample up to 100 MS/s. Howeter,USRP digital processing chain cannot
support this rate and hence the ADC sampling rate can be seth@her than 50 MS/s.
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Figure 7-4.Spectrum Occupancy ResultsThe figure shows the average spectrum occupancy at
our geographical location on Friday 01/15/2013 betweeprh:2as viewed at a 10 ms granularity
(top) and 10@s granularity (bottom). It shows that the spectrum is spaeecupied. Further, the
sparsity increases when one computes the occupancy oveerstime windows.

a non-sparse spectrum, we use trace-driven experimentllBet traces of one GHz of highly
occupied spectrum, we use many USRPs to transmit and re@iivee we have a total of 20
USRPs, we divide them into 10 receivers and 10 transmittetapture 250 MHz at a time. We
repeat this 4 times at center frequencies that are 250 MHz apd stitch them together in the
frequency domain to capture the full 1 GHz spectrum. We thefopm the inverse FFT to obtain
a time signal sampled at 1 GHz. We now sub-sample this timeadosignal using three co-prime
rates: 1/21, 1/20, and 1/23 GHz. We run D-BigBand using theseampled versions of the signal.
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7.7 BigBand’'s Spectrum Sensing Results

7.7.1 Outdoor Spectrum Sensing

We collect outdoor measurements from the roof top of a 24 féidr building. We use BigBand
to capture the signal between 2 GHz and 2.9 GHz over 30 minWesconfigure BigBand to
compute the spectrum over an FFT window of size We report here results fa/ = 10ms and

W = 100us. We calculate the occupancy of a particular frequency epéncentage of the FFT
windows during which the frequency was occupied.(the power at that frequency was at least
twice the noise power).

Figure 7-4 shows the fraction of time that each chunk of spaetbetween 2 GHz and 2.9 GHz
is occupied, as recovered by BigBand. These results were m@diusing a spectrum analyzer.
The figure shows that the spectrum is sparsely occupied.rticpiar, the occupancy is about 5%
when considered over FFT windows of 10 ms and drops to aboun284n viewed over windows
of 100 us. The figure shows that even frequencies that look 100% edgver 10 ms windows,
become less occupied when viewed over shorter intervals.ibecause while these frequencies
are occupied for some fraction of every 10 ms interval, tieeeelarge number of shorter windows
within each 10 ms where these frequencies are not occupaeckx@@mple, the WiFi band around
2.4 GHz seems fully utilized when checked over 10 ms windgwsif one views it over windows
that are 100 times shortard., 100u:s), one would discover that the medium is almost always idle.
In contrast, the band around 2.1 GHz which is used by celteleinologies is occupied even at
very short time scales.

The above implies that the spectrum is sparser at finer titeevals, and provides more oppor-
tunities for fine-grained spectrum reuse. This result nabéis the need for fast spectrum sensing
schemes to exploit these short-term vacancies.

Finally, we note that measurements collected in other ioeator on different dates show
similar results to those in Figure 7-4 but may differ slighth which frequencies are occupied.
Measurements from higher parts of the spectrum are guadibatsimilar but have significantly
higher sparsity (we omit the figures for lack of space).

7.7.2 BigBand vs. Spectrum Scanning

Most of today’s spectrum sensing equipment relies on sogniiven expensive, power hungry
spectrum analyzers typically capture a 100 MHz bandwidtbne shot, and end up scanning to
capture a larger spectrum [1.69]. The performance of setgligracanning the spectrum depends
mainly on how fast the device can scan a GHz of bandwidth. ératbsence of fast scanning, the
system can miss radar and other highly dynamic signals., Mereompare how fast it would take
to scan the 900 MHz bandwidth using three techniques: sfatige-art spectrum monitors like the
RFeye [153], which is used in the Microsoft spectrum obserya8 USRPs sequentially scanning
the 900 MHz, or 3 USRPs using BigBand.

Table 7.1 shows the results for different FFT window sizesll cases, BigBand takes exactly
the time of the FFT window to acquire the 900 MHz spectrum. It¥SRPs combined can scan
150 MHz at a time and hence need to scan 6 times to acquireltf@MHz. For FFT window
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FFT Window | BigBand | 3 USRP Seq. ScanRFeye Scar
(900 MHz) (150 MHz) (20 MHz)
1us 1us 48 ms 22.5ms
10 us 10 us 48 ms 22.5ms
100us 100us 48 ms —
1ms 1ms 54 ms —
10 ms 10 ms 114 ms —

Table 7.1:Spectrum Sensing Scanning TimeBigBand is multiple orders of magnitude faster
than other technologies. This allows it to perform realdisensing to take advantage of even short
term spectrum vacancies.
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Figure 7-5:False Negatives and Positives as a Function of Spectrum Sgséy: BigBand’s false
positive and false negative rates are extremely low.

sizes lower than 10 ms, the scanning time is about 48 ms. KHémedJSRPs spend very little
time actually sensing the spectrum, which will lead to a foinissed signals. Of course, state of
the art spectrum monitors can do much better. The RFeye n®&la fest scanning mode of 40
GHz/second [153]. It scans in chunks of 20 MHz and thus wkket22.5 ms to scan 900 MHz.
Note that RFeye has a maximum resolution of 20 kHz, and heneg miat support FFT windows
larger than 5Qus.

Thus, BigBand, which uses off-the-shelf components, is mastef than even expensive scan-
ning based solutions, allowing it to detect short-term e vacancies.

7.7.3 BigBand’s Sparsity Range

The primary motivation of BigBand is to be able to sense spgmsetsum. In this section, we verify

the range of sparsity for which BigBand works. We run our experits between 3.05 GHz and
3.95 GHz because this band is effectively empty (see Figuie &hd hence enables us to perform
controlled experiments. We vary the sparsity in the 3.05 &Hz. 95 GHz range between 1% and
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Figure 7-6:Unresolved Frequencies as a Function of Spectrum SparsityBigBand cannot re-

solve around 2% of the frequencies with 5% spectrum occypand stays below 14% even when
spectrum occupancy grows as large as 10%.

10% by transmitting from 5 different USRPs. Each USRP trarsmgignal whose bandwidth is
at least 1 MHz and at most 20 MHz. We randomize the bandwidthtla® center frequencies of
the signals transmitted by the USRPs. For each sparsity, lsealepeat the experiment 100 times
with different random choices of bandwidth and center fesgues. We run BigBand over a 1 ms
FFT window. We consider three metrics:

e False Negatives The fraction of occupied frequencies that BigBand incotyexports as
empty.

e False PositivesThe fraction of empty frequencies that BigBand incorrectlgarts as occu-
pied.

e Unresolved FrequenciesThe fraction of total frequencies that BigBand cannot resdlive to
unresolved collisions.

Figure 7-5 shows that BigBand’s false positives and false thexgarates are extremely low.
The probability of false positive stays below 0.0005 everewh0% of the spectrum is occupied.
The probability of false negative is less than 0.002 whersgiextrum occupancy is less than 5%,
and stays within 0.003 even when the spectrum occupancyugosl10%.

Figure 7-6 shows that the fraction of unresolved frequemisigess than 0.03 when the spectrum
usage is below 5%. This number increases as the spectrura ugagases, but stays below 0.14
when 10% of the spectrum is used. Unresolved frequenciesare as spectrum usage increases
because the probability of collision increases. Note hawévat in contrast to false positive and
false negatives, BigBand knows which exact frequencies itdcoat resolve and reports these
frequencies with the label “not-estimated”. Thus, unresdlfrequencies show lack of information
as opposed to errors. The application can decide how tourgasolved frequencies. For dynamic
spectrum access, it can simply avoid the unresolved fregegn

We also note that real-world spectrum measurements, fearios, in the Microsoft observa-
tory, and our results, reveal that actual spectrum usage5%o2In this regime, BigBand’s unre-
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Figure 7-7:BigBand’s Packet Loss as a Function of the Number of Simultane@iTransmit-

ters: BigBand can decode as many as 30 transmitters spread acro8V&H0wide band, while
keeping the packet loss less than 3.5%.

solved frequencies are less than 0.03. Further, if the @uypis high, one may use D-BigBand,
which deals with high occupancies (see results in Secti@an 7.

7.8 BigBand’'s Decoding Results

7.8.1 Decoding Multiple Transmitters

In this section, we verify that BigBand can concurrently decatdhrge number of transmitters from
diverse parts of the spectrum. All the transmitters in oyslementation use the same technology,
but the result naturally generalizes to transmitters udifigrent technologies.

We use 10 USRPs to emulate up to 30 transmitters hopping incargpeof 0.9 GHz. At any
given time instant, each device uses 1 MHz of spectrum tetn#tra BPSK signal. Similar to the
Bluetooth frequency hopping standard, we assume that theaamaster that assigns a hopping
sequence to each device that ensures that no two device® liop $ame frequency at the same
time instant. Note however, that the hopping sequence ftardnt devices allows them to hop
to frequencies that get aliased to the same bucket at a ylartitme instant, and hence collide
in BigBand'’s aliasing filters. Like in Bluetooth, each trangerithops 1, 3, or 5 times per packet,
depending on the length of the packet.

Figure 7-7 shows the packet loss rate versus the number mleddvopping in the spectrum. It
shows that BigBand can decode the packets from 30 devicesiaganbandwidth of 900 MHz
with a packet loss rate less than 3.5%. Decoding all theserrdaters without BigBand would
either require a wideband 0.9 GHz receiver, or a receiven @@t RF-frontends, both of which
would be significantly more costly and power-hungry.
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ADC Quantization BigBand vs Narrowband R
mean max
8 bits -2.73dB -2.78 dB
14 bits -5.68 dB -5.89dB

Table 7.2:Reduction in SNR at Different Quantization Levels

7.8.2 Signal-to-Noise Ratio

It is expected that BigBand will have more noise than a narrombyaceiver since it can capture
a much larger bandwidth. This section aims to shed insighh@nissue. We note three types of
noise: thermal noise, quantization noise and ADC jittersac’]. BigBand has higher thermal
noise due to bucketization. Specifically, since in our impatation, the 900 MHz bandwidth
is aliased into 50 MHz, it is expected that the thermal noiselld/ increase byi8x (12.5 dB).
However, quantization noise and ADC jitter noise do notsalend hence do not increase. The
overall increase in noise depends on how the thermal norspares to these other types of noise.

To understand the impact of thermal noise and quantify thie $drformance of BigBand we
compare it with a 50 MHz narrowband receiver that uses theedd8RP hardware. We transmit
a 10 MHz signal, receive it on BigBand and the narrowband receand compare the resulting
SNR. We connect BigBand and the narrowband receiver to the saimena and ensure that both
receivers’ rx-gains are set properly so that the receivglasiamplitude spans the same range on
both receivers. We run it for different receive signal stytis and measure the SNR on each. We
repeat the measurements for the ADC quantization set te&bd 14 bits to better understand the
interaction between thermal noise and quantization noise.

Table 7.2 shows the mean and max reduction in SNR of a sigoaiver on BigBand relative
to the narrowband USRP. The result shows that at 8 bit quaiotizahe reduction is a little less
than 3 dB which means that the 12 dB increase in thermal noiydranslates to 3 dB reduction in
SNR due to quantization and jitter noise. At a quantizatibbobits, the SNR reduction becomes
6 dB which means that the ADC jitter noise is still signifidguitigher than thermal noise. Though
this reduction in SNR is significant compared to narrowbaivers, one would require using
18 such receivers to capture in realtime the same 900 MHzviddtidas BigBand which is not
practical in terms of cost and bulkiness.

7.9 D-BigBand’'s Sensing Results

In this section, we evaluate D-BigBand’s ability to sense gearnn spectrum occupancy indepen-
dent of sparsity. We implement D-BigBand as described in 8ecti6. We vary the percentage
of total occupied frequencies in the spectrum between 1%rgsp to 95% (almost fully occu-
pied). We then change the number of frequencies that charggancy every 1 ms by up to
1% (.e., 10 MHz), and evaluate D-BigBand’s accuracy in identifying frequencies that change
occupancy.

As a function of spectrum occupancy, Figure 7-8 shows treefpbsitivesi(e., frequencies
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Figure 7-8:D-BigBand’s Effectiveness as a Function of Spectrum SparsityOver a band of

1 GHz, D-BigBand can reliably detect changes in spectrum aowtypeven when the spectrum is
95% occupied, as long as the change in spectrum occuparessithan 1% every ms.

whose occupancy has not changed, but D-BigBand erroneouslsrded as changed) and false
negativesi(e., frequencies whose occupancy has changed, but D-BigBanikeusly declares as
unchanged). We see that D-BigBand robustly identifies chaimgascupancy, with both the false
positive and the false negative probabilities remainindeur®.02 even for a spectrum occupancy
of 95%.

7.10 Conclusion

This chapter presented BigBand, a system that enables GHzseidsing and decoding using
commodity radios. As a spectrum sensing device, it couldesé¢ine occupancy of the spectrum
under both sparse and non-sparse cases. As a receptioa,degithe first receiver that can decode
a sparse signal whose bandwidth is larger than its own tligggiadwidth. Empirical evaluation
demonstrates that BigBand is able to sense the spectrum stadblglynamically under different
sparsity levels; we also demonstrate BigBand’s effective@assa receiver to decode GHz-wide
sparse signals. We believe that BigBand enables multiplecapioins that would otherwise require
expensive and power hungry devicegy.realtime spectrum monitoring, dynamic spectrum access,
concurrent decoding of multiple transmitters in diversegaf the spectrum.
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Chapter 8

Faster GPS Synchronization

8.1 Introduction

The global positioning system (GPS) is one of the most pemagireless technologies. It is in-
corporated in more than one billion smartphones world-7&g, and embedded in a wide variety
of devices, including personal navigation systems [16&hssrs [39], digital cameras [135], and
even under-the-skin bio-chips [67]. The key functionabfya GPS receiver is to calculate a po-
sition, called a fix. Computing a fix involves locking on the G&&ellite signals and decoding
satellite orbit and time data. Most GPS receivers, howearerembedded with some other radio
(e.g., WiFi, cellular, or ZigBee) and, hence, can downloaddbntent of the GPS signal from as-
sisted GPS (A-GPS) servers instead of decoding it from thedlisa signals [92F With assisted
GPS used widely in phones and other GPS-capable devicegh®@djulk of what a GPS receiver
does is to lock on the satellite signal (i.e., synchronizeéhw). This allows the receiver to cal-
culate the sub-millisecond synchronization delay necgdea computing its position [£1]. The
importance of locking is further emphasized by the fact thatent GPS receivers are typically
duty-cycled [22, 152]; hence, they need to re-synchronittke the satellite signals regularly. Syn-
chronizing with the satellite signal, however, is a costlggess that requires tens of millions to a
few billion digital multiplications [167]. Many GPS-enaal devices (e.g., mobile phones, sensors,
etc.) have strict power limitations and would benefit fromueing the complexity of this process.

In this chapter, we aim to reduce the cost of synchronizirih wieak signals like GPS. At a
high level, GPS synchronization works as follows: eachlig&tés assigned a CDMA code. For
each satellite, the receiver needs to align the correspgr@dDMA code with the received signal.
The process is complicated because GPS signals are very (akalst 20 dBbelowthe noise
level |144]). To find the right alignment of each satellit€&;BS receiver conducts a search process.
It computes the correlation of the CDMA code with the receisigghal for all possible shifts of the
code with respect to the signal. The correct shift is the baeémaximizes the correlation.

So, how does a GPS receiver compute all these shifted coored® The traditional approach
convolveghe received signal with the CDMA code of each satellite irtitme domain. The correct
alignment corresponds to the one that maximizes this catieol. This approach has a computa-

1The data includes almanac, ephemeris, reference time. A@§%lso provide other optional assistance clata [92].
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Figure 8-1:FFT-Based GPS Synchronization Algorithm The algorithm multiplies the FFTs of
the received signal with the FFT of the code, and takes th& Bffhe resulting signal. The output
of the IFFT spikes at the shift that correctly synchronizesdode with the satellite signal.

tional complexity ofO(n?), wheren is the number of samplésMore recent GPS receivers lock
on the satellite using frequency domain computation. Tp@@ach leverages the fact that convo-
lution in the time domain corresponds to multiplicationhe frequency domain. It proceeds in the
following three steps, shown in Figure 3-1: 1) The receia&es the FFT of the received signal; 2)
It multiplies the output of this Fourier transform by the F&ffthe CDMA code; and 3) It performs
the inverse FFT on the resulting signal. This 3-step proisessathematically equivalent to con-
volving the signal with the code; thus, the output of the meeeFFT will spike at the correct shift
that synchronizes the code with the received signal, assiowigure 8-1(d). The computational
complexity of this approach i€ (n log n). For the past two decades, this has been the algorithm
with the lowest computational complexity for synchrongiea GPS receiver [157].

This chapter introduces the lowest complexity GPS syndhabion algorithm to date. Our
synchronization algorithm is based on the following obagons:

e First, we note that since the output of the synchronizatroogss has a single major spike at the
correct shift, as shown in Figure 8-1(d), the inverse FFTerysparse. We build on the Sparse
Fourier Transform algorithms from Part | of this thesis grsiicantly reduce the runtime of the
GPS synchronization algorithfrHowever, the Sparse Fourier Transform algorithms predente
in Part | use relatively complex filters and estimation teghas to deal with the interaction of
multiple potential spikes at the output of the transforncdntrast, here, we exploit the fact that
the synchronization problem produces only one spike, aedjde simple sublinear algorithm
that uses only aliasing to filter the signal. This allows usstduce the complexity of the IFFT
step in Figure 8-1(d) to sublinear time.

2The CDMA code consists of 1023 chips transmitted at 1.023 MAdz a GPS receiver that samples at 5 MHz, the
computational complexity of the shifted correlatior{ 1923 x 5/1.023)2, which is about 25 million multiplications of
complex signal samples. The GPS receiver has to repeatrtiiess for multiple satellites (between 4 to 12 satellites)
and multiple Doppler shifts (between 21 to 41 shifts) fortesatellite, which brings the number of multiplications to
over a billion. Further, correlating with one block of thgsal may not be sufficient. For weak signals, the receiver
may need to repeat this process and sum up the output [96].

3Sparse Fourier Transform algorithms are designed for the where the output of the Fourier Transform contains
only a small number of spikes. Hence, they are applicabletio Bparse Fourier Transform and Sparse Inverse Fourier
Transform. For a more detailed description see Secticn 8.3.
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¢ Although the output of the inverse FFT is sparse and can lklyuscomputed, the GPS signal
in the frequency domain is not sparse (Figure 8-1(b)) andcdiethe runtime of the forward
FFT cannot be reduced by applying a Sparse Fourier Transfbnons, simply using Sparse
Inverse Fourier Transform does not reduce the overall cexitylof the problem (which is still
O(nlogn) due to the forward FFT). To address this issue, we note thd&fT in Figure 8-1(b)
is just an intermediate step that will be used as an inpug&fiarse Inverse Fourier Transform.
Since the Sparse Inverse Fourier Transform algorithmsad@enly on a subset of their input
signal, we do not need to compute the values of all frequeratiehe output of the forward
FFT. We leverage this property to compute only a subset ofrdguencies and reduce the
complexity of the FFT step.

We provide an algorithm that, for any SNR, is as accurate astiggnal FFT-based (or
convolution-based) algorithm, but reduces the computatioomplexity fromO(n log n) opera-
tions toO(n+/log n). Further, when the noise in the received signal can be balioyle (n/ log® n),
we prove that the same algorithm has a linear complexity,@.én ).

We implement our design and test it on two datasets of GP&lsigiWe collected the first
dataset in the US using software radios. The second datasatollected in Europe:The datasets
cover both urban and suburban areas. We compare our desigisiagn FFT-based synchroniza-
tion algorithm. Our design reduces the number of multipicses for detecting the correct shift
by a median oR.2x. Since a large fraction of GPS power is consumed by the sgnctation
process (30% [141] to 75% [142] depending on the requiredracy), we expect the new design
to produce a significant reduction in GPS power consumption.

Finally, this chapter makes both algorithmic and systenmgrdgmitions, which can be summa-
rized as follows:

e It presents the fastest algorithm to date for synchroni@iR$ receivers with satellite signals.
The algorithm has multiple features: 1) It is adaptive, iiecan finish faster if the SNR is
higher; 2) it continues to work at very low SNRs; and 3) it is g, i.e., it can be used to
synchronize any signal with a random (or pseudo random).code

e It provides an implementation and an empirical evaluatiomeal GPS signals, demonstrating
that the algorithmic gains translate into a significant midum in the number of operations
performed by a GPS receiver.

8.2 GPS Primer

The key functionality of a GPS receiver is to calculate itsipon using the signal it receives
from the GPS satellites. To do so, the receiver computesrtierieeded for the signal to travel

“Note thatn is not a constant and varies across GPS receivers. Spdyjfitiferent receivers sample the GPS
signal at different rates, hence obtaining a different neimdf samples per codeword. For example, for a receiver
whose sampling rate is 5MHz=5000, whereas for a 4MHz receiver4000.

5The Europe dataset is courtesy of the GNSS-SDR team [49kaE#mtre Tecnologic de Telecomunicacions de
Catalunya (CTTC).
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Figure 8-2:GPS Trilateration: After determining the distance to different satelliteg thceiver
can draw spheres centered at each of the satellites and wdmtis@re the respective distances.
These spheres should intersect at the receiver’'s posAi@PS receiver needs four satellites to
uniquely determine its position [96]. Extra satellites ba&used to correct for the lack of very tight
synchronization between the receiver’s clock and thosheatellites.

from each satellite to itself. It then multiplies the comgulitime by the speed of light to obtain
its distance from each satellite. As a result, the receivemis that it lies on a sphere centered
at that satellite and whose radius is the computed distdntteen determines its position as the
intersection of several such spheres through a methodidall#eration [95] shown in Figure 8-2.

But how does the receiver compute the propagation time frens#itellites? The propagation
time is obtained using a synchronization algorithm thadvedl the device to lock on the received
signal. Specifically, each satellite has its own CDMA codéedahe C/A code, which consists of
1023 chips [96]. Assuming the receiver's and satellitestk$ are perfectly synchronized, a GPS
receiver generates the satellites’ codes at the same tithe aatellites. Due to propagation delay,
however, the signal arrives in a shifted version at the vecdiy exactly the amount of time it took
the signal to travel from the satellite. By correlating withifeed versions of the satellite’s code,
the receiver calculates the propagation time as the shifthath the correlation spikes [167]. In
practice, the receiver’s clock is not fully synchronizedhithat of the satellites; this, however, can
be compensated for by increasing the number of satellites insthe trilateration proceSs.

The motion of the satellites introduces a Doppler shift ia tbceived signal. The signal does
not correlate with the C/A code unless the Doppler shift isexded. To deal with this issue, a

SAll GPS satellites use atomic clocks and are fully synctzediwith each other [96]. Hence, a GPS receiver will
have the same clock skew with respect to all satellites antthelestimated propagation delays will have the same
errore. However, trilateration needs only 4 satellites to estérhé position and thus extra satellites can be used to to
estimate and correet

114



-10 S
PRSI 2000
Doppler Shifts 5 10 1000 code Shifts

(KHz) 0 (samples)

Figure 8-3:2D Search for Peak Correlation.The plot shows the result of correlating with a C/A
code for a satellite whose signal is present in the receiiggths On the x-axis, we search 4000
different code shifts and on the y-axis 21 different Dopglaifts.

GPS device typically performs a 2-dimensional search orrgheived signal [96]: one for time
(code shifts), and one for Doppler shifts. Specifically, theeiver tries all possible code shifts,
and 41 equally spaced Doppler shifts within +/-10 kHz of thater frequency [167], as shown in
Figure 8-3. Finally, the GPS satellites repeat the coder2@difor each data bit to enable the GPS
receiver to decode very weak signals. The receiver triese¢cone code repetition to synchronize.
However, if the signal is too weak, the receiver repeats bws@arch for multiple codes and sums
the result [96].

8.3 QuickSync

We describe QuickSync, a synchronization algorithm for G&=ivers. The algorithm works in
the frequency domain similar to the FFT-based algorithntidiesd in Section 8.1. QuickSync,
however, exploits the sparse nature of the synchronizgtiobnlem, where only the correct align-
ment between the received GPS signal and the satellite eases their cross-correlation to spike.
QuickSync harnesses this property to perform both the Epand inverse Fourier transforms in a
time faster tharO(n log n), therefore reducing the overall complexity of GPS synclaation.

The next subsections formalize the problem and detail tperighm.

8.3.1 Problem Formulation

The synchronization problem can be formulated as followgea spreading code= ¢, ..., ¢,_1
of sizen and a received signal = . . . . , z,,_1, find the time shift that maximizes the correlation
betweenc andx, i.e., compute:

t = argmaxc_, ® X, (8.1)
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where® is a circular convolution and_,, is the time reversed code; i€., = ¢,_1, ..., ¢g. Com-
puting this convolution in the time domain requires perforgn correlations each of size and
thus has complexity) (n?). However, convolution in the time domain corresponds tonelet-by-
element multiplication in the frequency domain. Therefooenputing the convolution in Equa-
tion 8.1 can be done more efficiently by performing FFT on eatkhe code and the signal,
multiplying those FFTs, then performing an inverse FFT {IF&s shown below:

argmaxc_, ® X = argmax F {F{c}* - F{x}}, (8.2)
t t

whereF(.) is the FFT,F~1(.) is the IFFTx is the complex conjugate arids any time sample in
the output vector of the convolution. This reduces the cexipt of the synchronization process
to O(nlog(n)). Accordingly, in the remainder of this chapter, we only ddes the FFT-based
synchronization algorithm as a baseline for evaluatingcsync’s performance.

8.3.2 Basics

Before introducing our synchronization algorithm, we redtime reader of a basic subsampling/aliasing
property of the Fourier transform, which we have introduice@hapter 1 and have previously used
in Chapters &, 5, aric 7. However, here we will focus on the diuthii® property which states that:
Aliasing a signal in the time domain is equivalent to subsargpt in the frequency domain, and
vice versaFigure 8-4 illustrates this property.
Formally, letx be a discrete time signal of length andX its frequency representation. L€t
be a version ok in which adjacent windows of sizB (where B dividesn) are aliased on top of
each other (i.e., samples that are- n/ B apart are summed together). Then,fet 0... B — 1:

n/B—1
X', = Z Xt+jB- (8.3)
§=0
Thus,X’, the FFT ofx’ is a subsampled version &, and forf =0... B — 1
X'y =Xy, (8.4)

wherep = n/B, and the subscript iX,; refers to the sample whose indexpis< f.

8.3.3 The QuickSync Algorithm

We describe how QuickSync operates on a received GPS sigisghthronize it with an inter-
nally generated C/A code. For simplicity, we assume thatripatisignal neither exhibits a carrier
frequency offset nor a Doppler shift; in later sections, wieerd the algorithm to deal with these
frequency offsets. Furthermore, in this section, we dbsdhe algorithm in the context of synchro-
nizing the GPS receiver with the signal of only one sateltite algorithm can be easily adapted
for synchronizing with multiple satellites.
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Figure 8-4:The Duality of Aliasing and Subsampling.Aliasing in the time domain corresponds
to subsampling in the frequency domain and vice versa. Rglhliasing) the time domain signal
in the top left results in the signal in the top right; speaifi, time samples 1 and 6 add into
sample 1 in the aliased signal, samples 2 and 7 into sampte.2ne&he Fourier domain, the FFT
of the aliased signal is a subsampled version of the FFT oihilial signal; namely, sample 1 in
the bottom right signal corresponds to sample 2 in the bolédtysample 2 corresponds to sample
4, etc.

The key insight to our algorithm is that the IFFT performedsiap 3 of the FFT-based syn-
chronization algorithm is sparse in the time domain, itehas only one spike and, hence, can be
performed in sub-linear time. Further, a sub-linear tingwathm for computing the Sparse Inverse
Fourier Transform would require a sub-linear number of damas input; thus, there is no need to
perform a fulln log n FFT on the received GPS signal and obtain all ofitSequency samples.
Rather, we only need to compute the frequency samples thiabevilsed to perform the Sparse
Inverse Fourier Transform.

Below, we explain how we exploit these ideas to reduce the tmxty of both the IFFT and
FFT performed to synchronize the signal with the code. We thea these components together in
a complete algorithm.

(a) Sparse Inverse Fourier Transform

We develop a simple algorithm to efficiently perform the IF§t€p of GPS synchronization and
quickly identify the spike of the correlation between theaiged signal and the CDMA code. To
do so, our algorithm uses a sub-linear number of samplesdigmnal.

The Sparse Inverse Fourier Transform algorithm proceedsllasvs. It first subsamples the
frequency domain signal of size by a factor ofp. It then computes the IFFT over thesép
frequency samples. Recall that subsampling in the frequdanyain is equivalent to aliasing in
the time domain. Thus, the output of our IFFT step is an aliaggsion of the output in the
original IFFT step shown in Figure &-1. Aliasing here can leved as a form of hashing, where
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the n original outputs samples, i.e. time shifts, are hashedsififobuckets. Time shifts which are
n/p apart will be summed and hashed together in the same budket atitput of our IFFT. Since
there is only one correlation spike in the output of the IRIRE, magnitude of the bucket it hashes
into will be significantly larger than that of other bucketiseve only noise samples hash to. Hence,
the algorithm chooses the bucket with the largest magnitumdeng then /p buckets at the output
of our IFFT.

Out of thep time shifts that aliased (or hashed) into this chosen buckdy one is the actual
correlation spike. To identify the spike among theseandidate shifts, the algorithm correlates
the received signal with each of thogeshifts of the CDMA code. The shift that produces the
maximum correlation is the right spike.

(b) Subsampled FFT

With the sparse IFFT step in place, the algorithm does nod tlee wholen-point FFT of the
signal. Specifically, all the IFFT requires is a subsampledion of this signal. Thus, rather than
taking a full n-point FFT, QuickSync aliases the received signal in the titamain before taking
its FFT, as in Equation 8.3 (Said differently, QuickSync suap blocks of sizen/p and then
computes a smaller FFT of size'p.) The output of this FFT, expressed in Equation 8.4, is éxact
the samples we need at the input of the sparse IFFT, desaime:.

A subsampled input to the IFFT (as described in Section gap.8sults in an output spike of
smaller magnitude relative to the noise bed. To compensathik loss, we aliag x n samples
instead ofr into blocks of sizen/p before performing the FFT.

(c) Full Algorithm
The QuickSync algorithm proceeds in the following steps:

1. Aliasing: Alias p x n samples of the GPS signal intd = n/p samples as described in
Equatior 8.3, wherg = /log n.

2. Subsampled FFT:Perform an FFT of size/p on the aliased time signal. This is ef-
fectively equivalent to performing an FFT of size and subsampling the output ky/
according to Equation 8.4.

3. Multiplying with the code: Subsample the FFT of the satellite CDMA code of length
by p, and multiply the resulting samples by thép samples at the output of st@pabove.
Note that the algorithm can precompute the FFT of the CDMA cawl@ store it in the
frequency domain.

4. Sparse Inverse Fourier Transform: Perform an IFFT on the:/p resulting samples.
Since the input of this IFFT was subsampled, its output &salil in the time domain. Specif-
ically, each of then/p buckets at the output of this stage is effectively the sum aliased
time sample$ as described in Section 8.3.3(a).

” Note that we only geb candidate shifts (and net) because the actual code is of size n; hence, all shifts mod n
are the same. Thus, although the total number of samptesasd they are aliased into/p buckets, we only have
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5. Find the unique solution: Find the bucket with the maximum magnitude among the
n/p buckets. Then, check the correlation of each of ghgossible time shifts which are
aliased into this bucket, and pick the shift that gives theimam correlation. Checking
the correlation can be done using omlyp samples as per Lemma F.3.3; therefore, it takes
a total ofp x n/p = n to perform the correlation of the shifts and pick the one that
maximizes the correlation.

(d) Runtime

The running time of the QuickSync algorithm may be computedadiows. Step 1 performs
np additions. Step 2 performs an FFT which take log(n/p). Step 3 performs:/p multi-
plications. Step 4 takes/plog(n/p) to perform the IFFT, and finally Step 5 performsoper-
ations to compute the correlations and find the solution.sTkue complexity of QuickSync is
O(pn + (n/p)log(n/p)). To minimize this complexity, we set = /log n which makes the
overall running time of QuickSyn©(n/log n).

(e) Scaling with the SNR

If the signal is too weak, GPS receivers repeat the synchation algorithm on subsequent signal
samples and sum up the output to average out the roise [16ig]approach allows the receiver
to scale the computation with the SNR of the signal. The aggr@an be applied independent of
the algorithm; hence, we also adopt it for QuickSync. HoweRelickSync operates on blocks of
sizepn whereas the traditional FFT-based algorithm operatesarkblof sizen. Both QuickSync
and the traditional FFT-based algorithm compare the madaisquared of the largest spike to
the noise variance in the received signal. If the largedtespisquared magnitude exceeds the
noise variance by a desired margin, the algorithm termgidwe search and declares the time shift
corresponding to the largest spike as the correct alignn@herwise, the algorithm repeats the
same process on the subsequent signal samples, and sunesvtibetput with the previous one.
Since the spike corresponding to the correct synchrowizasi at the same time shift in each run,
it becomes more prominent. In contrast, noise spikes aorarand hence they tend to average
out when combining the output of multiple runs of the synciiwation algorithm.

(f) Linear Time Algorithm

The algorithm described in Section 8.3.3(c) above can beerhiadar-time by modifying Step 1:
instead of takingpn samples, we take only samples and alias them intg/p buckets, where
p = log n. The rest of the steps are unmodified. This reduces the caityptd Step 1 ton, and
the total complexity of the algorithm t0(n + (n/p)log(n/p)) = O(n).

This linear-time algorithm has weaker guarantees than Ilogeasuper-linear algorithm and
may not always work at very low SNRs, as detailed in Section@m& can try this algorithm first.
If a spike is detected with the required margin, the alganiterminates. Otherwise, one can fall
back to the super-linear algorithm in Section 8.3.3(c).

distinct shifts per bucket.
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8.4 Theoretical Guarantees

In this section, we analyze the performance of the basehdeuickSync algorithms (both the
linear and super-linear variants), under natural proksigilassumptions about the input sigial

In particular, we show that both the baseline and the supeail QuickSync are correct under the
same asymptotic assumptions about the variance of the imotke signalx. At the same time,
the running time of our algorithm is equal @(pn + (n/p) log(n/p)), wherep is the number of
blocks used. This improves over the baseline algorithm wh&sO(n log n) runtime as long as
the termpn is smaller thar(n/p) log(n/p). In particular, by setting = /log n, we achieve the

running time ofO(n+/log n).

8.4.1 Assumptions

Recall that we use = ¢ ... c,_; to denote the spreading code. We @§eéto denote the code
shifted byt = 0...n—1,i.e.,¢!”) = ¢/1i mod n. We have thak = c(*) + g for some shiftt, where
g denotes the noise vector. We make the following assumptions

1. The coordinategy ... g, of the noise vectog are independent and identically dis-
tributed random variables that follow a normal distribatiwith zero mean and varianee
That is, we assume additive white Gaussian noise (AWGN).

2. The coordinates, . .. ¢,,_; of the spreading code are independent and identically dis-
tributed random variables with values §r-1, 1}, such that®r[c; = 1] = Pr[¢; = —1] =
1/2. This assumption models the fact that the CDMA cadés pseudorandom

8.4.2 Combining Multiple Runs

As described in Section 8.3.3(e), both the baseline andigaritam can sum the output of multiple
runs to average out the noise and increase the probabilityeottifying the correct spike. The
analysis of such multi-run scenario can be derived dirdotign a single run. Specifically, say the
algorithm runsL times and sum up the outputs of theseuns. This is equivalent to reducing the
noise variance to’ = o/L. Therefore, thel-run scenario can be analyzed by reducing it to the
case of a single run, with variance divided by

8.4.3 Guarantees

Here, we walk the reader through the guarantees. The prdafe @uarantees can be found in
Appendix F-. We start by stating the sufficient condition floe tbaseline algorithm to work with
probability approaching.

Theorem 8.4.1.Assume that < ¢(n)n/lnn for ¢(n) = o(1). Then the baseline algorithm is
correct with probabilityl — o(1).

The proof is in Appendix F.1. The above condition is alsotti@pecifically,
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Theorem 8.4.2.There exists a constant> 0 such that foroc > ¢n/In n, the baseline algorithm
is incorrect with probabilityl — o(1).

The proof is in Appendix F.2. We then proceed with the analgdithe two variants of the
QuickSync algorithm. The first statement holds for the sdipear variant, and shows that the al-
gorithm works with probability approaching 1 under the sarmiedition as the baseline algorithm,
while being faster.

Theorem 8.4.3.Assume that < c(n)n/Inn for ¢(n) = o(1), and thatp = o(n'/%). Then, the
QuickSync algorithm that aliasesblocks of size: into n/p buckets is correct with probability
1 — o(1). The running time of the algorithm i8(pn + (n/p) log(n/p)), which isO(n+/log n) for
p = +/log n. Moreover, the algorithm performs onty(n + (n/p) log(n/p)) multiplications, for
anyp.

Finally, we analyze the linear-time variant of the Quick&wtgorithm.

Theorem 8.4.4.Assume that < ¢(n)_q. for c(n) = o(1), and thatp = o(n'/®). Then, the
QuickSync algorithm that aliases one blockno§amples inta:/p buckets is correct with proba-
bility 1 — o(1). The running time of the algorithm i8(n + (n/p) log(n/p)), which isO(n) for

p > logn.

The proof of the above two theorems can be found in Appen@x F.

8.5 Doppler Shift & Frequency Offset

GPS satellites orbit the Earth at very high speeds. Consdgutre GPS signal arrives at the
receiver with a Doppler shift. This shift is modeled as a @rexacy offsetf; which is a function of
the relative speed of the satellite (see Chapter 2 in [64] Xacecalculations). Furthermore, the
discrepancy between the RF oscillators of the GPS satelidalee GPS receiver induces a carrier
frequency offsetAf.. The total frequency offsehf = f; + Af,. typically ranges from -10 kHz
to 10 kHz [167] and is modeled as a phase shift in the receiaagpkes. Formally, ik andx are
respectively the signal without and with a frequency ofteen:

fi‘t = It ejQﬂ—Aft, (85)

wheret is time in seconds.

Like past synchronization algorithms, QuickSync must geand correct for the frequency
offset in the received GPS signal in order for the corretatamspike at the correct code shift. How-
ever, since QuickSync processes n samples as opposed tosamples in past algorithms(see
Section 8.3), it needs to deal with larger phase shifts tbatiaulate ovepn samples. In order
to overcome this limitation, QuickSync performs a finer geal frequency offset search, which
introduces an overhead to the 2D search. This overhead veovi® amortized across all satellites
in the GPS signal since correcting for this frequency offsetone on the received signal before
it is multiplied by each satellite’s C/A code. In Section &,Ave show that despite this overhead,

121



(a) Sampler (b) Antenna

Figure 8-5:The SciGe GN3S SamplerThe sampler is used to collect raw GPS data. It down-
coverts the received signal and delivers the | and Q sampli®tcomputer.

QuickSync still provides a significant reduction in the cangtional complexity of GPS synchro-
nization. Furthermore, the frequency offset changes gi¢@de Section 8.7.2); hence, the receiver
can cache its value from recent GPS readings, and does mbttmaearch for it for every GPS
synchronization event.

8.6 Testing Environment

8.6.1 Data Collection

We test our algorithm on a data set consisting of 40 GPS sigaeés captured from urban and
suburban areas in US and Europe. The traces in US are cdllesiteg the SciGe GN3S Sampler
v3 [45] shown in Figure 8-5(a). The GN3S is a form of softwaadio that collects raw complex

GPS signal samples. We set the sampling rate of the GN3S98 #4161z and its carrier frequency

to 1575.42 MHz. The traces from Europe are collected usiaty ®RP2 software radio [47] and the
DBSRX2 daughterboard, which operates in the 1575.42 MHz randas capable of powering up
active GPS antennas [47]. The Europe traces are collectadavdampling frequency of 4 MHz.

We also use a 3V magnetic mount active GPS antenna shown imef-835(b). These datasets
allow us to test the performance of QuickSync in differendgraphical areas and for different
GPS receiver hardware.

8.6.2 Baseline Algorithm

We compare our algorithm against a baseline that uses tHgidreal FFT-based synchroniza-
tion [176]. The baseline algorithm operates on blocks o sizIf a spike is not detected after
processing the first block, the algorithm repeats the coatjmut on the next block, i.e., the next set
of n samples, and sums up the output of the IFFTs. The algoritrepskprocessing more blocks
until the magnitude of the peak crosses a certain threslagldi¢scribed in Section 8.7.1). Note
that the algorithm must sum up the magnitudes of the outpthiefFFTs rather than the actual
complex values; otherwise, samples would combine incaotilgrelue to the accumulated phase
caused by the Doppler shift (see Secrior 8.5).
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8.6.3 Implementation

We implement both QuickSync and the FFT-based algorithm atléh and run them on the col-
lected GPS traces. Both algorithms use the FFTW [54] impléatiem internally to compute the

Fourier transform (though the baseline computes-gint transform while QuickSync computes
ann/p-point transform).

8.6.4 Metrics

We use two metrics for comparing the algorithms: number oftiplications, and number of
floating point operations (FLOPs). We mainly focus on the bhanof real multiplications exe-
cuted until an algorithm finds the synchronization offsdtisTmetric is particularly important for
hardware-based GPS synchronization, where multiplinatawe significantly more expensive than
additions [148], and serve as standard metric to estimatedmplexity of a potential hardware
implementation [3C, 165].

Some GPS-enabled devices do not have a full fledged GPSeebardware to reduce cost and
form factor [121]. They use a GPS radio to collect signal das)ut offload the synchronization
algorithm to the main CPU of the device, where it is done invgaffe. To evaluate QuickSync'’s
performance on software-based GPS receivers, we countuthbar of FLOPs executed by both
QuickSync and the baseline. FLOPs is a standard metric as@luate software implementations
of algorithms, including FFTW [54]. It includes both muliigations and additions.

We count the FLOPs using OProfile, a standard profiler for kisystems [129]. We run the
code in Matlab R2011b under Ubuntu 11.10 on a 64-bit machitie itel i7 processor. We run
OProfile from within Matlab in order to profile the part of thede executed by each algorithm,
and get a more accurate estimate of the number of FLOPs. WegmndOProfile to log the counter
INST_RETIRED (the number of executed floating point operatimmthe Intel i7 processor [139]).

8.7 Results

8.7.1 Setting the Synchronization Threshold

As explained in Section 8.2.3(e), both QuickSync and the-B&3ed synchronization algorithm
check that there is a sufficient margin between the detectednmum spike and the noise level,
before accepting the spike as the one that identifies thedatignment. Specifically, they check
that the ratio of the spike’s magnitude squared to the n@sance exceeds a particular threshold.
This threshold defines how large the spike has to be in cosgratd the bed of noise to ensure
enough confidence that the spike is not due to noise and isdrige to the code matching. Hence,
the threshold is a measure of the SNR of the spike and is netdiemt on the data. In particular,
if the GPS data is noisy as in an urban area, the algorithncaitinue processing more data until
the threshold is crossed (as discussed in Secticn 8.6).ntmasw, if the GPS data is less noisy
as in an open suburban area, the algorithm will terminatly ear since the spike will cross the
threshold after processing one or two blocks.
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Figure 8-6:Probability of Error Versus the Threshold. The plot shows that the probability of

error decreases sharply for both algorithms, and that ahbteé of90 for QuickSync and 00 for
the baseline produce a zero error probability.

In this section, we aim to verify that there is such a thredlioht works for all datasets. Thus,
we perform the following experiment. We vary the threshaédvieeen a value of 1 and 200, and
for each of those values, we run both algorithms on a subsbedBPS traces from both datasets.
We define the probability of error as the ratio of runs thapaut false positive (i.e., in which the
algorithm terminates by returning an invalid shift) to théal number of runs at a given threshold.

Figure 8-6 plots the probability of errors versus the présetishold. The plot shows that setting
the threshold t®0 for QuickSync and 00 for the baseline produces a zero error probability. The
baseline has a slightly higher error probability than Q8ipkc. This is because the baseline takes
ann-point IFFT and, hence, has to ensure that none ofithel noise spikes exceeds the correct
spike that corresponds to the proper alignment. In cont€@sickSync takes an/p-point IFFT
and hence has fewer noise spikes that have to be kept beldtwéshold.

The figure also shows that the used metric is stable, i.eth@)metric is consistent across
traces captured from two continents, and (2) the probgofiterror decreases monotonically as
the threshold increases. This shows that the thresholdlependent of the location of the GPS
receiver.

In the experiments that follow, we set the threshold$0tand100 for QuickSync and the base-
line respectively. We also use a different set of traces fitomse used in testing for this threshold
to ensure separation between testing and training.

8.7.2 Performance in Terms of Hardware Multiplications

We start by evaluating the performance gain of QuickSyna &Fel-based synchronization in
terms of the number of hardware multiplications. We run eaficQuickSync and the FFT-based
algorithm on both traces collected in US and Europe. We raeiperiment 1000 times; each time
taking a different subset of samples from these datasetsowipare the total number of multipli-
cations required by each of the algorithms to synchronizh thie signals of satellites present in
the GPS traces. Figure 8-7 shows a CDF of the gain. The gaicisiaged as the number of mul-
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Figure 8-7:Gain of QuickSync Over the FFT-based Algorithm in Number of Multiplica-
tions. The two curves show the CDFs of the QuickSync’s gains for theabb Europe datasets.
QuickSync achieves a median gain of around<ahd a maximum gain of 3:3,
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Figure 8-8:Number of Multiplications on a Per Satellite Basis for the Europe Trace.The gain
of QuickSync over the FFT-based algorithm varies amongifit satellites and ranges between
and 1.5¢< and 4x.

tiplications needed by the FFT-based algorithm dividedhgyrtumber of multiplications required
by QuickSync. The figure shows that QuickSync always outper$ the FFT-based synchroniza-
tion on both the US and EU traces with a median gain ok2.Phis means that QuickSync can
save on average twice the number of hardware multiplication

To better understand the performance of QuickSync we zooom ithe number of multipli-
cations required by each algorithm for each of the satsll&pecifically, each point in the CDFs
in Figure 8-7 corresponds to a full GPS reading with all $isesl However, because different
satellites have different Doppler shifts and signal sttkegwe expect the gains to vary from one
satellite to another. Specifically, for each of the satdldetected in the Europe traces, and for each
GPS reading, we measure the number of multiplications requy both algorithms to perform
the synchronization. We repeat this experiment 1000 tinmedifterent subset of the samples and
plot the average results in Figure 8-8.
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Satellite Code] 9 12 14 15 18 21 22 25 27
Mean (Hz): 75 100 150 175 75 75 175 25 125
Max (Hz): 300 200 300 300 300 200 300 100 300

Table 8.1Variation in the Doppler Shift in the US Traces. For a given satellite, the Doppler shift
of the received signal varies very little over a period of 2tsoand in an area of 2-mile diameter.

Figure 8-8 shows that each of the satellites, on averagejresgless multiplications using
QuickSync. However, the gains vary considerably amongetBasellites. For example, satellites 5
and 18 have an average gain of whereas satellites 14 and 15 have an average gain of onty 1.5
Examining the Doppler shifts of these satellites we find Had¢llites 5 and 18 have Doppler shifts
of 6000 Hz and 1000 Hz respectively while satellites 14 antdae Doppler shifts of 600 Hz and
6800 Hz. This shows that the latter require a finer grain Deppggarch as explained in Section 8.5.
However, because QuickSync is opportunistic, it first aftesno search at courser grain shifts (the
same as the baseline), but falls back to finer resolutionstifigils to detect a peak that passes the
threshold. Even in such scenarios, however, it consistentiperforms the baseline as the figure
shows.

In many scenarios, the receiver knows the Doppler shift@ripThe reason for this is that the
Doppler shift varies only slightly between nearby locasi@md over a time period of about an hour.
In order to test how much the Doppler shift varies, we meatha®oppler shift of satellite signals
in the GPS traces captured at different locations withinmail2-diameter geographical area over a
period of 2 hours. For each of those satellites, we calctifetenean and the maximum variation
in the Doppler shift of all those signals and record them ibl&@#.1.. The mean change is around
100 Hz and the maximum is 300 Hz. Accordingly, since GPS vecsiare duty cycled, whenever
the receiver wakes up, it may use the Doppler shift it catedldbefore going to sleep rather than
performing an exhaustive search for it. Alternatively,istesl GPS receivers may download the
measured Doppler shift from an adjacent base station [AlHoth of these situations, the GPS
receiver can significantly reduce the overhead of seardbinipe right Doppler shift.

In order to measure the gains of QuickSync without the Dapgpéarch, we repeat the first
experiment but this time by providing each of the synchratan algorithms with the correct
Doppler shift for each satellite. Figure 8-9 shows a CDF ofdR8ync’s gain over the FFT-based
algorithm in terms of number of multiplications over all thens on both traces. For both traces,
QuickSync achieves a median gain of 4.8 his shows that QuickSync’s gains increase when the
receiver caches the correct Doppler shift across readilifgsnote that some of the traces benefit
from QuickSync much more than others; the reason is thaé thes have higher SNRs such that
QuickSync can synchronize to their signals using the Iuieae algorithm without falling back to
the super-linear variant.

8.7.3 Performance on software based GPS receivers

In this section, we test the performance of QuickSync omsut based GPS receivers in terms of
the number of floating point operations (FLOPs). We run Q8isic and the FFT-based algorithm
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Figure 8-9:Gain of QuickSync Over the FFT-based Algorithm When the Dopper Shift is
Known. The two curves show the CDFs of the gain in number of multiplbces for both of our
GPS traces. QuickSync achieves a median gain of 4.8
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Figure 8-10:Gain of QuickSync Over the FFT-based Algorithm in FLOPs. This metric illus-
trates the gains of QuickSync for a software based impleatient The CDFs show a median gain
about 2.Z and a maximum gain of around X7

on the US and Europe traces and use OProfile to count the numhibdrOPs as described in
Section 8.5. We run the experiment 1000 times with a diffeseibset samples of the traces and
calculate the gain as the ratio of the number of FLOPs redliyethe FFT-based algorithm to the
number of FLOPs required by QuickSync. We do not assume snetkperiment that the Doppler
shift is known and we let both algorithms search for the rigbppler shift. Figure 8-10 shows a
CDF of the gains. QuickSync achieves a median gainoéd 2.3« over the FFT-based algorithm
for the US and Europe traces respectively. This shows thatkQync can reduce the number of
CPU computation on average by half in software based GPS/egseli
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8.8 Related Work

FFT-based GPS synchronization was first proposed by Nee[&7&l] who showed that it reduces
synchronization complexity fron®(n?) to O(nlog(n)), wheren is the number of samples per
C/A code. QuickSync builds on this technique and and lever#uge Sparse Fourier Transform to
further reduce the synchronization complexity.

Our approach is related to past work on GPS block-averadip§,[167], which sums up con-
secutive signal blocks before performing the FFT. QuickSyowever differs from that work along
two axes: First, on the algorithmic front, past work perferarfull size FFT of: points. One cannot
simply replace this:-point FFT with the Sparse Inverse Fourier Transform begaas explained
in Sectiori 8.1, the output of the FFT is not sparse. In cont€@sckSync introduces a design that
can harness the Sparse Fourier Transform. This enable&k&3uic to operate with a smaller FFT
of sizen/p, which provides faster synchronization. Second, past warklock-averaging focuses
on weak GPS signals and does not provide an adaptive desigwdinks for the whole range of
GPS SNRs. Applying their approach to the whole SNR range @am imnecessary overhead. This
is because they average and pre-process many blocks irdbapenf the SNR. As a result, these
schemes increase the synchronization delay for scenarishich only one (or a few) blocks are
sufficient for detecting the spike. In contrast, our aldoritadaptively processes more data when
the spike is too low for detection, and hence gracefullyesalith the SNR of the received GPS
signal.

Signal synchronization is a general problem that appliesther wireless technologies, e.g.,
WiFi and cellular. However, synchronization in these teshgies is simpler because the noise
level in the received signals is much lower than in GPS. Fangde, WiFi receivers can lock on
the signal simply by detecting an increase in the receiveeep()76]. This is not possible in GPS
since the signal is received at 20 #Blowthe noise floor [144]. Cellular systems also operate at
much higher SNRs than GPS, which allows them to synchronittergfatively low overhead [97].

QuickSync is also related to the general class of work onaieduGPS power consumption.
The most common approach uses assisted-GP5 [92, 150], intaitres connecting to an assisted
GPS server through a WiFi or cellular network. The servewripies the GPS receiver with the
GPS data decoded from each satellite signal, which alloesr¢beiver to avoid decoding the
GPS signal. The device can also offload GPS computationstoltlud after acquiring the GPS
signal [50, 113, 136]. The latter approach, however, resltive complexity of the device but still
requires the device to transmit the GPS signal to the celtalger (thus consuming transmission
power and even bandwidth [50]). Other approaches for redu&PS power consumption leverage
WiFi, sensors, or the cellular signal to localize the reee|24, 134, 170]. These schemes typically
are less accurate than GPS and are more constrained in tewhei@ they can be deployed. Our
work contributes to this effort by tackling the complexitfjtbe GPS receiver itself.

8.9 Conclusion

This chapter presents the fastest synchronization algorior GPS receivers to date. The gains
of the algorithm are also empirically demonstrated forwafe GPS implementations as well
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as potential hardware architectures. Because synchrmmzednsumes a significant amount of
power, we expect the reduced complexity to decrease GPS powsumption. Further, we believe
that the sparse synchronization algorithm we introducadlizer applications in signal processing
and pattern matching. We plan to explore those applicatiofigure work.
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Chapter 9

Light Field Reconstruction Using
Continuous Fourier Sparsity

9.1 Introduction

Fourier analysis is a critical tool in rendering and compateal photography. It tells us how
to choose sampling rates, e.q., [42, 43, 75, 126], predipeupounds on sharpness, e.qg., [109,
110, 132], do fast calculations, e.g., [161], model wavecspe.g., [65, 1&8], perform light field
multiplexing [177], and do compressive sensing, e.g.,.[B6Jparticular, the sparsity of natural
spectra, such as those of light fields, makes it possibledonsgruct them from smaller sets of
samples, e.g., [106, 177]. This sparsity derives natufadsn the continuous Fourier transform,
where continuous-valued depth in a scene translates to @§paaes in the Fourier domain. How-
ever, practical algorithms for reconstruction, includihg Sparse Fourier Transform algorithms
from Part | of this thesis, usually operate on the Discretgrieo Transform (DFT). Unfortunately,
little attention is usually paid to the impact of going frolretcontinuous Fourier domain to the
discrete one, and it is often assumed that the sparsityatefiem continuous principles holds for
discrete sampling and computation. In this chapter, we rtaeritical observation that much of
the sparsity in continuous spectra is lost in the discretaain, and that this loss of sparsity can
severely limit reconstruction quality. We propose a newrapph to reconstruction that recovers a
discrete signal by optimizing for sparsity in the continsalomain. We first describe our approach
in general terms, then demonstrate its application in thmest of 4D light field acquisition and
reconstruction, where we show that it enables high-queditpnstruction of dense light fields from
fewer samples without requiring extra priors or assumtsuch as Lambertian scenes.

The difference between continuous and discrete sparsityado the windowing effect. Sam-
pling a signal, such as a light field, inside some finite windsvanalogous to multiplying that
signal by a box function. In the frequency domain, this nplitation becomes convolution by an
infinite sinc. If the nonzero frequencies of the spectrummatgoerfectly aligned with the resulting
discretization of the frequency domain (and therefore #re zrossings of the sinc), this convolu-
tion destroys much of the sparsity that existed in the coltis domain. This effect is shown in
Figure 9-1(a) which plots a 2D angular slice of the 4D lighkdfigpectrum of the Stanford crystal
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(a) Sparsity in the discrete vs (b) Sampled viewpoint images (¢) Reconstruction of unsampled (d) Reconstruction of unsampled
continuous spectrum viewpoint image: blue in (b) viewpoint image: green in (b)

Figure 9-1:Sparsity in the Discrete vs. Continuous Fourier Domain, andOur Reconstruc-
tion Results: (a) The discrete Fourier transform (top) of a particular 2igwdar slicew,,, w, of
the crystal ball’'s light field, and its reconstructed contns version (bottom). (b) A grid showing
the original images from the Stanford light field archive eTimages used by our algorithm are
highlighted (courtesy of [163]); (c) and (d) Two examplesre€onstructed viewpoints showing
successful reconstruction of this highly non-Lambertie@ne which exhibits caustics, speculari-
ties, and nonlinear parallax. The uv locations of (c) andafe)shown as blue and green boxes in

(b).

ball. In practice, natural spectra, including those oftifglds, are never so conveniently aligned,
and this loss of sparsity is always observed.

We introduce an approach to recover the sparsity of ther@igiontinuous spectrum based on
nonlinear gradient descent. Starting with some initialragjmation of the spectrum, we optimize
for sparsity in the continuous frequency domain througleftdkmodeling of the projection of con-
tinuous sparse spectra into the discrete domain. The oofpihis process is an approximation
of the continuous spectrum. In the case of a light field, thigraximation can be used to recon-
struct high quality views that were never captured and exénagolate to new images outside the
aperture of recorded samples.

Our approach effectively reduces the sampling requiresnehtiD light fields by recovering
the sparsity of the original continuous spectrum. We shatitrenables the reconstruction of full
4D light fields from only a 1D trajectory of viewpoints, whicwould greatly simplify light field
capture. We demonstrate a prototype of our algorithm onipteltiatasets to show that it is able to
accurately reconstruct even highly non-Lambertian scdfigares 9-1(b), 9-1(c), and 9-1(d) show
our reconstruction of a highly non-Lambertian scene and.ihérajectory of viewpoints used by
our implementation.

We believe that our observations on continuous versusatessparsity and careful handling of
sampling effects when going from a sparse continuous Fouaasform into the discrete Fourier
domain can also have important applications for computatiphotography beyond light field
reconstruction as well as other areas like medical imagsngeawill see in Chapter :L0.
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9.2 Related work

Light field capture is challenging because of the 4D naturkgbt fields and the high sampling

rate they require. Capture can be done with a micro lens atiine @ost of spatial resolution, e.g.
[4, 55, 133], using robotic gantries [111], using camerays1[179], or with a handheld camera
moved over time around the scene [23, 37, 66]. All these isolsitrequire extra hardware or time,
which has motivated the development of techniques that eaonstruct dense light fields from
fewer samples.

[106, 108] argue that the fundamental differences betweeonstruction strategies can be
seen as a difference in prior assumptions made about thefikggh Such priors usually assume a
particular structure of sparsity in the frequency domain.

Perhaps the most common prior on light fields assumes thgptarea scene is made up of
Lambertian objects at known depths. Conditioning on depinehergy corresponding to a Lam-
bertian surface is restricted to a plane in the frequencyailonintuitively, this means that given a
single image and its corresponding depth map we could rémsll 4 dimensions of the light
field (as is done in many image based rendering techniqubs)pfioblems with this approach are
that the Lambertian assumption does not always hold anddtégah estimation usually involves
fragile nonlinear inference that depends on angular in&tion, meaning that sampling require-
ments are not reduced to 2D in practice. However, paired aitoded aperture [107, 177] or
plenoptic camerel [18], this prior can be used to recoverrsapelution for Lambertian scenes in
the spatial or angular domain.

Levin and Durand [106] use a Lambertian prior, but do not esthat depth is known. This
corresponds to a prior that puts energy in a 3D subspace difgtitefield spectrum, and reduces
reconstruction to a linear inference problem. As a resdy ttequire only 3 dimensions of sam-
pling, typically in the form of a focal stack. Like our exarem@pplication, their technique can also
reconstruct a light field from a 1D set of viewpoints. Howeuhkey still rely on the Lambertian
assumption and the views they reconstruct are limited t@p®zture of input views. In contrast,
we show how our approach can be used to synthesize highétyquels both inside and outside
the convex hull of input images without making the Lamberaasumption. For a comparison, see
Sectior 9.7.

The work of [113] assumes a different kind of structure to sparsity of light fields. This
structure is learned from training data. Specifically, theg sparse coding techniques to learn a
dictionary of basis vectors for representing light fieldeeTictionary is chosen so that training
light fields may be represented as sparse vectors. Theirlyimdpassumption is that new light
fields will have similar structure to those in their trainidgta.

9.3 Sparsity in the Discrete vs. Continuous Fourier Domain

In this section, we show how the discretization of a signat th sparse in the continuous Fourier
domain results in a loss of sparsity. We then give an overoiesur approach for recovering sparse
continuous spectra. In subsequent sections, we will desaridetail one application of this theory,
namely, reconstructing full 4 dimensional light fields franfiew 1D viewpoint segments. We will

133



also show results of this application on real light field data
A signalz(t) of length NV is k-sparse in the continuous Fourier domain if it can be repitese
as a combination of non-zero continuous frequency coefficients:

1 & 2mtw;
z(t) = v >~ a; exp ( ]]V ) 9.1)
=0

where{w, }*_, are the continuous positions of frequencies (i.e., @adh not necessarily an inte-
ger), and{ ¢; }%_, are the coefficients or values corresponding to these frezie® The same signal
is sparse in the discrete Fourier domain only if all of thé&s happen to be integers. In this case,
the output of itsV-point DFT has only non-zero coefficients. Consequently, any signal that is
sparse in the discrete Fourier domain is dlsgparse in the continuous Fourier domain; however,
as we will show next, a signal that is sparse in the continkeugier domain is not necessarily
sparse in the discrete Fourier domain.

9.3.1 The Windowing Effect

The windowing effect is a general phenomenon that occureiwhe computes the discrete Fourier
transform (DFT) of a signal using a finite window of sampleisic8 it is not limited to the light
field, we will explain the concept using one-dimensionahsig. It naturally extends to higher
dimensions.

Consider computing the discrete Fourier transform of a tigeady(¢). To do so, we would
sample the signal over a time windcﬁwg, g], then compute the DFT of the samples. Since the
samples come from a limited window, it is as if we multipli¢gtoriginal signaly(¢) by a box
function that is zero everywhere outside of this acquisitt@ndow. Multiplication in the time
domain translates into convolution in the Fourier domainc& acquisition multiplies the signal
by a box, the resulting DFT returns the spectrum of the oaigsignaly (¢) convolved with a sinc
function.

Convolution with a sinc, in most cases, significantly redubessparsity of the original sig-
nal. To see how, consider a simple example where the sigalis one sinusoid, i.ey(t) =
exp (—2j7mwt). The frequency domain of this signal has a single impulse &ay we sample the
signal over a window—4, 4], and take its DFT. The spectrum will be convolved with a sae,
explained above. The DFT will discretize this spectrum ® BT grid points located at integer
multiples of%. Because a sinc function of Wid’%] has zero crossings at multiplespa‘ (as can be
seen in Figure 9-2(a)), ib is an integer multiple o% then the grid points of the DFT will lie on
the zeros of the sirfe) function and we will get a single spike in the output of the DH®wever,
if @ is a not an integer multiple oj then the output of the DFT will have a sinc tail as shown in
Figure 9-2(b).

Like most natural signals, the sparsity of natural lightdgeis not generally aligned with any
sampling grid. Thus, the windowing effect is almost alwapserved in the DFT of light fields
along spatial and angular dimensions. Consider the effeatimdowing in the angular domain
(which tends to be more limited in the number of samples, amsequently exhibits a stronger

windowing effect). Light fields are sampled within a limité® window of uv coordinates. As
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Figure 9-2.The Windowing Effect: Limiting samples to an aperturkis equivalent to convolving
the spectrum with a sinc function. (a) If a frequency spilks Ibn a DFT grid point then the sinc
disappears when it is discretized, and the original spao$ithe spectrum is preserved. (b) If the
frequency spike is not on the DFT grid, once we discretize ateagsinc tail and the spectrum is
no longer as sparse as in the continuous domain.

a result, the DFT of each 2D angular slitfe%wy (wu,wy), is convolved with a 2D sinc function,
reducing sparsity. Figure €-3(a) shows the DFT of an anglilee from the crystal ball light field.
As can be seen in the figure, the slice shows a sparse numbeiaks$ put these peaks exhibit
tails that decay very slowly. These tails ruin sparsity arakenreconstruction more difficult. We
propose an approach to light field reconstruction that ressdlve windowing effect by optimizing
for sparsity in the continuous spectrum. Figure 9-3(b) shawontinuous Fourier transform of the
same crystal ball slice, recovered using our approach. tatehe peak tails caused by windowing
have been removed and the underlying sparsity of light fiekdsbeen recovered.

9.3.2 Recovering the Sparse Continuous Fourier Spectrum

From sparse recovery theory we know that signals with sgarsger spectra can be reconstructed
from a number of time samples proportional to sparsity irfierier domain. Most practical sparse
recovery algorithms work in the discrete Fourier domainweer, as described above, the non-
zero frequency coefficients of most light fields are not ietegAs a result, the windowing effect

ruins sparsity in the discrete Fourier domain and can caxisérg sparse recovery algorithms to
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Figure 9-3:Light Field Spectrum in the Discrete and Continuous Fourier Domains: A 2D
angular slice of the 4D light field spectrum of the Stanforgstal ball for(w,,w,) = (50, 50). (a)

In the discrete Fourier domain, we have sinc tails and thetgpa is not very sparse. (b) In the
continuous Fourier domain, as reconstructed by our algorgithe spectrum is much sparser. It is
formed of 4 peaks which do not fall on the grid points of the DFT

fail. Our approach is based on the same principle of spaceweey, but operates in the continuous
Fourier domain where the sparsity of light fields is preseérve

Recall our model in Equaticn 9.1 of a signal that is sparseenctimtinuous Fourier domain.
Given a set of discrete time sampleswt), our goal is to recover the unknown positiops }%_,
and values{a;}*_, of the non-zero frequency coefficients. From Equation 9.4 ,see that this
problem is linear in the valuea, }*_, and non-linear in the positiongv; }*_, of the non-zero
coefficients. Thus, to recover the values and positions, seeaucombination of a linear and non-
linear solver.

Recovering coefficient valuds;, }*_,: If we know the positions of non-zero coefficients (i.e.
eachw;) then Equation 9.1 becomes a system of linear equationsumitnowns{q,}*_,, and
given> £ discrete samples af(¢), we can form an over-determined system allowing us to solve
for eacha;.

Recovering continuous positiofis; } “_,: We use nonlinear gradient descent to find the contin-
uous positiongw; }*_, that minimize the square error between observed discretplea ofz(t)
and the reconstruction of these samples given by our cuzosfticient positions and values. Thus,
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the error function we wish to minimize can be written as

=¥

t

k rito |12
z(t) — ;z% a; exp (2 ]]\Z;WZ>H (9.2)

where a; and®; are our estimates of, andw; and the above summation is taken over all the
observed discrete samples.

As with any gradient descent algorithm, in practice, we begth some initial guess of discrete
integer positionq%(.o)}f:o. We use the discrete sparse Fourier transform algorithroridbes! in
Section 9.5.2 for our initialization. From this initial gs® we use gradient descentfan }%_, to
minimize our error function. In practice, the gradient ipagximated using finite differences. In
other words, we calculate error for perturbed peak Iocat{orﬁj) + 0;} and update ou{w§j+1)}
with thee; that result in the smallest error. We keep updating untiktiner converges.

Once we have recovered bothandw;, we can reconstruct the signa(t) for any samplet
using Equation 9.1.

9.4 Light Field Notation

A 4D light field L(z, y, u, v) characterizes the light rays between two parallel plameait cam-

era plane and they image plane, which we refer to as angular and spatial dimmeasespectively.
Each(u, v) coordinate corresponds to the location of the viewpoint chmera and eactx, y)
coordinate corresponds to a pixel Iocatiﬁ:ﬁwm, wy, Wy, wy ) Characterizes the 4D spectrum of this
light field. We will usef,%wy (wu,w,) to denote a 2D angular slice of this 4D spectrum for fixed
spatial frequencie§u,, w, ). Similarly, L, ,(z, y) denotes the 2D image captured by a camera with
its center of projection at locatiofu, v). Table 9.1 presents a list of terms used throughout this
chapter.

9.5 Light Field Reconstruction Algorithm

To demonstrate the power of sparse recovery in the contstourier domain, we show how it
can be used to reconstruct light fields from 1D viewpointtigries. We choose to work with 1D
trajectories because it simplifies the initialization of gtadient descent. However, the continuous
Fourier recovery described in the previous section is gérrd does not require this assumption.

In this section, we describe the Sparse Fourier Transford @@ our initialization as well
as our sparse continuous Fourier recovery. The reconstnuatgorithm described in this sec-
tion is shown in Algorithm 9.4.1. The initialization is gndy the $ARSEDISCRETERECOVERY
procedure shown in Algorithm 9.5.1 and the continuous repois given by the SARSECONTIN-
UOUSRECOVERY procedure shown in Algorithm 9.5.2.
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| Term | Definition
u, v Angular/camera plane coordinates
z,y Spatial plane coordinates
Wayy Wy Angular frequencies
Wy, Wy Spatial frequencies
L(z,y,u,v) 4D light field kernel
L(w,, wy, Wy, w,) | 4D light spectrum
Ew%wy (W, W) A 2D angular slice of the 4D light spectrum
ﬁwm,wy(u, v) A 2D slice for fixed spatial frequencies
X 2D slice= Ly, ., (u, v)
S Set of samplesu, v)
Xs 2D X with only samplesin S
Xg X|s reordered a$ x |S| vector
P Set of frequency positionso,,, w,)
Xp 1 x | P| vector of frequency coefficients
F Set of positions and coefficients,,, w,, a)
[N] The set{0,1,--- N — 1}
y 1D signal or line segment
M x M Number of image pixels in spatial domain
N x N Number of camera locations

Table 9.1:Light Field Notation

procedure SPARSHLIGHTFIELD(Ls)
iu,v(wx,wy) =FFT(L, ,(z,y)) foru,v € §
for w,,w, € [M] do
Lo, v, (W, w,) = 2DSPARSEFFT(L, o, (1, v)|5)
L(z,y,u,v) = IFFT(IAJ(wx, Wy, Wy Wy ))
return L

procedure 2DSPARSEFFT (X 5)
P = SPARSEDISCRETERECOVERY(X|s)
F, e = SPARSECONTINOUSRECOVERY(X s, P)
X(u,v) =3 pa-exp (2j7r%) for u, v € [N]
X = FFT(X)
return X

9.4.1: Light Field Reconstruction Algorithm
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Figure 9-4:Light Field Sampling Patterns: Our algorithm samples the:, v) angular domain
along discrete lines. (a) Box and 2 diagonals (b) Box and 2 imi#gsslopes= +2. Note that in
this case the discrete line wraps around.

9.5.1 Input

Our input is restricted to 1D viewpoint trajectories thansist of discrete lines. A discrete line in
the angular domain is defined by the sef@fv) points such that:

U = aut+7, modN
{v = au,t+7, mod N , fort € [N] (9.3)

where0 < a,, a,, 7, 7, < N and GCOa,, o) = 1

This lets us use the Fourier projection-slice theorem toveca sparse discrete spectrum, which
we use to initialize our gradient descent. Figure 9-4 shdwsspecific sampling patterns used in
our experiments.

For a light fieldL(z, y, u, v), our algorithm operates in the intermediate domﬁ'w;,,,wy(u, v),
which describes spatial frequencies as a function of viemipd/e start by taking the 2D DFT of
each inputimage, which gives us the spatial frequer{aigsv, ) at a set of viewpoint$ consisting
of our 1D input lines. We call this set of known sampfag,wy(u, v)|s. Our task is to recover the
2D angular spectrurﬁwx’wy (wy,w,) for each spatial frequendy,, w,) from the known samples

~

L., ., (u, v)s. For generality and parallelism we do this at each spatjifency independently,
but one could possibly use a prior on the relationship betvek#erent (w,,w,) to improve our
current implementation.

9.5.2 Initialization

The goal of our initialization is to calculate some initialegs for the position&ugo)}fzo of our
non-zero frequency coefficients. We do this using a Sparsadtdl ransform algorithm that lever-
ages the Fourier projection-slice theorem in a voting se&hsimilar to a Hough transform. By the
projection-slice theorem, taking the DFT of an input diserine gives us the projection of our
light field spectrum onto the line. Each projection givesghm of several coefficients in our spec-
trum. Different projections provide us with different syrasd each sum above a given threshold
votes for the discrete positions of coefficients that it ssmslar to the voting scheme described in
Chapter 3. The Sparse Fourier Transform algorithm thentsellee discrete positions that receive
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Figure 9-5:Discrete Fourier Projections: Computing the DFT of a discrete line of a 2D signal is
equivalent to projecting the 2D spectrum onto the line. Tgerbw of figures shows the sampled
lines and the bottom row of figures shows how the spectrunoiggted. Frequencies of the same
color are projected onto the same point. (a) row projectlmncplumn projection (c) diagonal
projection (d) line with slope = 2.

a vote from every input projection and returns these asitigliguess. We refer to this algorithm
as DSCRETESPARSERECOVERY and it is shown in Algorithm 9.5.1.

Computing Projections

To simplify our discussion of slices, we will us€ to denote the 2D slicéwz,wy(u, v) in our
intermediate domain anX to denote its DFTEWM (wy,w, ). Thus, our input is given by a subset
of sample sliceX,s, where the sef gives the coordinates of our input samplés, @) viewpoint
positions).

For each slic&X in our inputX|s, the views inX lie on a discrete line. We perform a 1D DFT
for each of these discrete lines, which yields the proj@atibour 2D spectrum onto a correspond-
ing line in the Fourier domain. Specifically, lgtbe the 1D discrete line corresponding to a 2D
sliceX, (parameterized by € [N])

y(t) = X(ayt + 7, mod N, a,t + 7, mod N) (9.4)

where0 < a,, a,, 7, 7, < N and GCQa,, o) = 1.

Then,y, the DFT ofy, is a projection oK onto this line. That s, each pointjnis a summation
of the N frequencies that lie on a discrete line orthogonat,tas shown in Figure 9-5. Specifically,
the frequencieéw,, w, ) that satisfyo,w, + a,w, = w mod N project together ontg(w) (recall
that discrete lines may ‘wrap around’ the input window).
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Figure 9-6:Voting Based Frequency Estimation:Two examples of the voting approach used
to recover the discrete positions of the large frequencia® forojections on discrete lines. The
2D spectrum is projected on a row, a column and a diagonah Eage projection votes for the
frequencies that map to it. Using only projections on a row aolumn, many frequencies get
two votes. By adding a 3rd projection on the diagonal, onlyl¢éinge frequencies get 3 votes. (a)
Frequencies (5,5), (5,9), and (9,5) are large and only teég gotes. (b) Some frequencies on the
diagonal are large and only these frequencies get 3 votes.

\oting

To recover the discrete positions of the nonzero frequenefficients, we use a voting approach.
For each line projection, the projected sums which are abomee threshold vote for the frequen-

cies that map to them (similar to a Hough transform). Sineesfiectrum is sparse, most projected
values are very small and only the coefficients of large feaxgies receive votes from every line

projection. Thus, by selecting frequencies that receites/rom every projection, we get an esti-

mate of the discrete positions of nonzero coefficients.

To better illustrate how voting works, consider the simptaraple shown in Figure 9-6(a).
The 2D spectrum has only 3 large frequencie§sas), (5,9) and(9,5). When we project along
the rows of our grid thé&th and9th entry of the projection will be large and this projection lwil
vote for all frequencies in théth and9t¢h columns. Similarly, when we project along columns
the projection will vote for all frequencies in thigh and 9tk rows. At this point, frequencies
(5,5),(5,9),(9,5),(9,9) have two votes. However, when we project on the diagonajuiacy
(9,9) will not get a vote. After 3 projections only the 3 correctduencies get 3 votes. Another
example is shown in Figure 9-6(b).

9.5.3 Optimization in the Continuous Fourier Domain

Recall from Section 9.3.2 that our optimization takes thalahpositions{wgo)}fzo and a subset of
discrete samples as input. With both provided by the inpdtiaitialization, we now minimize the
error function of our reconstruction using the gradientéas approach outlined in Section 9.3.2.
This optimization is shown in Algorithm 9.5.2.
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procedure SPARSEDISCRETERECOVERY(Xs)
y1 = PROJECTLINE(Xs,0,1,0,0)
y2 = PROJECTLINE(Xs,1,0,0,0)
¥3 = PROJECTLINE(X|s,1,1,0,0)
¥4 = PROJECTLINE(Xs,0,1, N — 1,0)
¥5 = PROJECTLINE(X|g,1,0,0, N — 1)
¥6 = PROJECTLINE(X|5,1,—1,0, N — 1)
P = RECOVERPOSITIONS(Y1, ¥2,¥3, Y3, ¥4, Y5, Ye6)
return P

procedure PROJECTLINE(X g, vy, ty, Ty To)
y(i) = X(iawy + 7y, icv, + 7,) for i € [N]}
y = FFT(y)
return y

procedure RECOVERPOSITIONSY1, V2, V3, Y4, ¥5, ¥6)
V1 =VOTE(y,,0,1,0,0,0)
Vo =VOTE(y2, 1,0,0,0, 0)
V3 =VOTE(ys,1,1,0,0,0)
Vy=VOTE(y4,0,1, N — 1,0,0)
Vs = VOTE(ys,1,0,0, N — 1,6)
Ve = VOTE(ys,1,—1,0, N — 1,6)
P=ViNVoNVsNViNVsN Vs
return P

procedure VOTE(Y, o, &y, 6)
I={i:|lg(i)] >0}
V = {(wy,wy) : ayw, + a,w, = iwhere; € I}
return V

> §:Power thresholg

|

9.5.1: Sparse Discrete Fourier Recovery Algorithm
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Recovering Frequency Coefficients

As we discussed in Section 9.3.2, when we fix the coefficiesttipms {w” }%_,, Equation 9.1
becomes linear in the coefficient valugs }*_ . To solve for the full light field spectrum at each
iteration of our gradient descent we express each of our krahgcrete input samples as a linear
combination of the complex exponentials given by our curobice of{w; }*_,.

With the appropriate system of linear equations we can siaiv¢he coefficient values that
minimize the error function described in Equation 9.2. Tostouct our system of linear equations,
we concatenate the discrete ingut v) samples fronX s into an|S| x 1 vector which we denote
asxg. Given the sefP of frequency positions we letp be the|P| x 1 vector of the frequency
coefficients we want to recover (with each coefficienk pcorresponding to a frequency position
in P). Finally, let A» be a matrix of|S| x |P| entries. Each row oA » corresponds to &u, v)
sample, each column corresponds tqap w, ) frequency, and the value of each entry is given by
a complex exponential:

Ap((0,0), (@o,0,)) = exp (2m 2L ) 95)
Now our system of linear equations becomes:
Xg = Ap)/ip (96)

We then use the the pseudo-inverseAgf to calculate the vectat}, of coefficient values that
minimize our error function:
x5 = Alxg (9.7)

The above is given by the procedure ®VERCOEFFICIENTSshown in Algorithir 9.5.2.

Gradient Descent

Recall from Section 9.3.2 that our gradient descent algorithinimizes the error function, which
we can now rewrite as:
minimize e(P) = ||xs — ApALxg|[? (9.8)

In the above equation, the frequency positions in theHistre continuous, but the input samples
x¢ that we use to compute our error are discrete. Thus, our @ation minimizes error in the
discretereconstruction of our light field by finding optimebntinuoudrequency positions.

In our gradient descent, each iteration of the algorithmatgslthe list of frequency positions
P. For each recovered frequency positiondnwe fix all other frequencies and shift the position
of this frequency by a small fractional stép< 1. We shift it in all 8 directions as shown in
Figure 9-7 and compute the new eregi”) given the new position. We then pick the direction that
best minimizes the errar( P) and change the position of the frequency in that directiomohe of

INote that we did not specify the threshold used to determitveta’ in our initialization. Rather than using a
fixed threshold, we choose the smallest threshold suchhbatytstem of equations from Equat on 9.6 becomes well
determined.
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(3.5,5.25)
(3.75,5.25) |
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4,6) (44 (4,5) (4,6)

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 9-7:0Optimizing the Continuous Frequency Positions:The gradient descent shifts the
frequency by a small step in every iteration. The frequeashifted in the direction that minimizes

the error. (a) Frequency (4,5) is shifted to a non-integesitjmm that best reduces the error. (b) The
frequency is shifted again to minimize the error. (c) Thg@rency position converges since shifting
in any direction will increase the error.

the directions minimize the error, we do not change the posdf this frequency. We repeat this
for every frequency position .

Our gradient descent ensures that from iteratitmiteration(i + 1), we always reduce error,
i.e., e(PUHD) < ¢(PW), The algorithm keeps iterating over the frequencies unélérrore(P)
falls below a minimum acceptable errorOnce we have a final list of continuous frequency posi-
tions, we can recover their coefficients using EquationBhé above gradient descent is given by
the procedure BADIENTSEARCH shown in Algorithir 9.5.2.

9.5.4 Reconstructing the Viewpoints

As explained in Section 9.3.2, once we have the continuosgipas and values of our non-zero
frequency coefficients, we can reconstruct the missing piemts by expressing Equation 3.1 in
terms of our data:

1 u v
Lipw,(u,v) =Y a-—exp <2j7ruw—|—vw> . (9.9)
(a,wy,wy)EF N N

By setting(u, v) to the missing viewpoints, we are able to reconstruct thielififit fields. Fig-
ure 9-8 shows a flow chart of the entire reconstruction.

Note that the above equation lets us reconstruct any) position. We can interpolate between
input views and even extend our reconstruction to imagédsatteaoutside the convex hull of our
input. This would not be possible if our sparse coefficieneseMimited to the discrete Fourier
domain, since the above equation would be periodic moduld his would create a wrapping
effect, and attempting to reconstruct views outside the sfaour input would simply replicate
views inside the span of our input. In other words, the discspectrum assumes that our signal
repeats itself outside of the sampling window, but by recogethe continuous spectrum we can
relax this assumption and extend our reconstruction to newsv
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procedure SPARSECONTINUOUSRECOVERY(X g, P)
FO ¢ = RECOVERCOEFFICIENT(X g, P)
1 =20
while e > ¢ do
FOHD eli+) — GRADIENTSEARCH(X 5, F'V, e(V)
v+ +
return F(), e

procedure GRADIENTSEARCH(X g, I, €)
P = {(wy,wy) : (a,wy,w,) € F}
for (w,,w,) € P do
(Au, Av) = GETGRADIENT (X s, P, €, Wy, Wy)
(Way o) = (Way wy) + (0Au, 0AD)
F', ¢’ = RECOVERCOEFFICIENT(X s, P)
return F’, ¢’

procedure GETGRADIENT(X g, P, €, wy, wy)
A= {('1!-1)! ('170)! (-1’1)’ (07'1)1 (0’1)’ (1! '1)’ (11 O)Hm)}
for (du,dv) € A do
P'=P - {(wwwv)}
P'= PU{(wy + 6du,w, + ddv)}
F, ¢’ = RECOVERCOEFFICIENT(X s, P’)
degu,ay = (e — €) /| (du, dv)]]

(du*, dv*) = argmaXy,, i eadeau, do
return (du*, dv*)

procedure RECOVERCOEFFICIENT(X|s, P)
A = Oys)x|p)
x5 = Ojs|x1
for i € {0,---,|S| -1} do
<u7 U) =5
x5(i) = X(u, v)
for k € {0,---,|P|—1} do

(Wuy wy) = Py,
A(i, k) = exp (2j7r7“w“;\7”°’”>
Xp = Afxg > AT is the pseudo-inverse &
e = HXS — A)A(p||2
F=A{(a,wy,w,) : a==Xp(k), (wy,w,) = Py |,CP:‘0
return F', e

9.5.2: Sparse Continuous Fourier Recovery Algorithm
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Figure 9-8:Flow Chart of the 2D Sparse Light Field Reconstruction Algorithm: The algorithm
takes a set of sampled discrete lines. The initializatidaci2te Recovery, has 2 steps: computing
the projections and recovering the discrete positions efléinge frequency coefficients. In the
sparse continuous recovery, the gradient search triesiftottsh positions of the frequencies to
non-integer locations and recover their coefficients. Wepke2peating this gradient search until
we get a small enough error. This stage will output a list aftcmous frequency positions and
their coefficients, which can then be used to reconstrudiuthD slice.

9.6 Experiments

We experimented with several data sets where full 4D coeeohthe light field was available for
comparison. For each of these data sets we extracted a sunatllem of 1D segments, which we
then used to reconstruct the full 2D set of viewpoints. We gara our reconstructed light fields
against the complete original data sets in our accompanyaeps.

Three of our data sets, the Stanford Bunny, the Amethyst,l@n&tystal Ball data sets, were
taken from the Stanford light field archive [1.63]. Each of 8tanford data sets consists of a 17x17
grid of viewpoints and was reconstructed using the box-épditern shown in Figure 9-4(a). On
these datasets, we performed our reconstruction in the Yoot space. The U and V channels
were reconstructed at half the resolution of the Y channel.

To show how our method scales with the number of input imagesam given, we captured
a larger dataset (the Gnome) consisting of 51x51 viewpoirtigs dataset was captured using a
robotic gantry similar to the one fror [163], and the doublg@aftern in Figure 9-4(b) was used
to select our input. The total number of input images is timeestor both the single X pattern and
the double X pattern, as the effective spacing between wiputs along diagonals is changed. For
this dataset our input consists of less than 12% of the @iginmages.

Our code was designed for flexible experimentation and iseatly slow. However, the al-
gorithm is highly parallelizable and we run it on a PC clustdre code is written in C++ using
the Eigen library. Thev,, w, slices of a light field are divided among different machirees] the
results are collected once all of the machines have finished.

Load balancing, variability in the number of machines used] different convergence char-
acteristics for different inputs make it difficult to estitaaxact run times. Using a cluster of up
to 14 machines at a time (averaging 5-6 cores each), typicginnes ranged from 2 to 3 hours
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(a)Reference (b)Levin&Durand (c)Our Reconstruction

Figure 9-9:Reconstruction of Stanford Bunny Data Set:On the left and in the middle are the
reference figure and the reconstruction from [Levin and DBdra010](courtesy of Levin). The
sampling pattern we used is the box-and-X pattern showngargi9-4(a). Though we used more
samples than Levin & Durand used, we did a much better jolrmmgef less blurring, preserving
the textures and having less noise.

for a colored data set (3 channels). There are several wagscderate the method - for exam-
ple, one could leverage the coherence across slices ocesiidte differences with a method that
converges faster, but we leave this for future work.

9.7 Results

9.7.1 Viewing our results

Our results are best experienced by watching the accompamideos which are available online
through this link! http://netmit.csail.mit.edu/LFSpaRecor/.

9.7.2 The Stanford Bunny

The Stanford Bunny dataset is our simplest test case. The ssérambertian and therefore es-
pecially sparse in the frequency domain. The spacing betuwgmit views is also very narrow, so
there is little aliasing. Each image is 512x512 pixels. @a@onstruction of the Bunny is difficult to

distinguish from the full light field captured by [163], asos¥n in Figure 9-9. Figurz 9-10 shows
that the reconstruction error is small.

9.7.3 Amethyst

The amethyst dataset is highly non-Lambertian. It exhliith specular reflections and refraction.
Again it is difficult to distinguish our reconstruction frotine full captured light field, as shown in
Figure 9-1.1. We reconstruct most of the reflected details thie exception of some undersampled
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Figure 9-10:Reconstruction Error: A color map of the difference in the Y channel between a
reference view and a reconstructed view from the StanforchBulataset. In about half of the
pixels the difference is zero. There is some unstructuresenbut it is hard to tell whether this
comes from the reference figure or our reconstruction. Tisea#so some structured noise on the
edge of the bunny, but again it is difficult to tell whetherstbbmes from reconstruction error or
an error in the pose estimate of the reference image.

features that move so fast they do not appear at all in the.ifjgure 9-12 gives an example of
this.

9.7.4 Crystal Ball

The Crystal Ball scene is extremely non-Lambertian, eximbitaustics, reflections, specularities,
and nonlinear parallax. We are able to reproduce most of dhgtex properties that make this
scene shown in Figure 9-13 so challenging, as can be seem acoompanying video online. If
one looks closely, our reconstruction of this light field taons a small amount of structured noise
which we discuss in Section 9.8.

9.7.5 Gnome

We acquired a new dataset consisting of 52x52 viewpoints résolution of each image is 640x480,
and we reconstructed all channels at full resolution.

The Gnome scene is mostly Lambertian with a few speculadigigis. In terms of the sub-
ject being captured, the difficulty of this scene sits somawltbetween the Stanford Bunny and
the Amethyst datasets. However, what makes this data mailibing is the level of noise in
our input. The captured images of the Gnome have noticelblen®ise, flickering artifacts, and
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(a)Reference (b)Levin&Dufand | (c)Our Reconstruction

Figure 9-11Reconstruction of the Amethyst Data SetOur reconstruction of Amethyst data set
(right), the reference figure (left) and the reconstructiom [106] (middle, courtesy of Levin). We
are using the box-and-X sampling pattern shown in Figuréa9;4vhich is more than the number
of samples used in [106]. However, we are able to reconsthistighly non-Lambertian view
and it is hard to distinguish our reconstruction from thé ¢alptured light field.

registration errors (“camera jitter”). Since these adifaare not sparse in the frequency domain,
our algorithm does not reproduce them in the output showngarg 9-14. For most of these arti-
facts, the result is a kind of denoising, making our outpgtiably better than the reference images
available for comparison. This is especially clear in theecaf camera jitter, where the effect of
denoising can be seen clearly in an epipolar image showngur€i9-165. However, some of the
shot noise in our input is reconstructed with greater stmgctWwe have a more general discussion
of noise in Section 9.8.

9.7.6 Extending views

Reversing the windowing effect in the second step of our &lgormakes it possible to reconstruct
views outside the original window of our input. To demontrthis we extend each of theandv

dimensions in our Bunny dataset by an additional 4 viewse@msing the size of our reconstructed
aperture by 53% (see Figure 9-15). These results are begicgied in our accompanying video.

9.7.7 Informal comparison with Levin and Durand [2010]

Like us, Levin and Durand [106] reconstruct light fields frarlD set of input images. Their
technique is based on a Lambertian prior with unknown depéprovide an informal compari-
son with their approach, but the different sampling paterithe two techniques make it difficult
to hold constant the number of input views used by each tgadeniLevin and Durand’s recon-
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Reference

Figure 9-12:Reconsrution of Specularities:One example of a reconstructed view from the
Amethyst dataset where we lose some reflection details. Té&ng specular reflection does not
appear in any of our input views, so it cannot be recovered.

Reference Our Reconstruction

Figure 9-13:Reconstruction of the Crystal Ball Data Set:We show ongu, v) view from the
reconstruction of the Crystal Ball dataset. We are using thepbas diagonals sampling pattern
(as shown in the blue box in the center). The red dot showsdkgign of reconstructed view in
the angular domain. Despite the fact that the scene is egtyemon-Lambertian and has complex
structures, we are still able to reconstruct most detaiteefight field.

struction uses fewer images but is restricted to synthagmiews within the convex hull of input
viewpoints. Our sampling patterns use slightly more imabaslets us synthesize views outside
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Reference

Our
Reconstruction

Figure 9-14:Reconstruction of the Gnome Data SetWe show on€u, v) view from our recon-
struction of the Gnome dataset. We use the sample pattenHigure 9-4(b), as shown by the blue
box in the bottom right. The red marker shows where the view ike angular domain. Although
the captured dataset is noisy, we are still able to recactstrin good detail.

the convex hull of our input. Small differences in input &sithe comparison in Figure 9-9 and
Figure 9-11 shows that our reconstruction is less blurry @oes not have some of the ringing
artifacts that appear in their results.

9.8 Discussion

9.8.1 Viewpoint Denoising

One advantage of reconstruction based on a sparse pri@ [thntial for denoising. Noisy input
tends to create low power high frequencies that are not pauroscene. These frequencies make
the spectrum less sparse and are usually zeroed out by auitlahg.

Since our reconstruction is based on sparsity inuthev, domain, we remove noise im, v.
This noise corresponds to ‘jitter,” usually caused by regtgon errors or camera shake. We can see
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@) (u,v) = (-2,-2) (b) (u,v) = (18,18)

Figure 9-15Extending Views: We extend our reconstruction of the Stanford Bunny datasgt (F
ure 9-9) and extend the camera views. The original vielvisu < 16 and0 < « < 16, and here
we show our extension t6-2, —2) and(18, 18).

? Reference
EPI

' Reconstructed
EPI

Figure 9-16:Viewpoint Denoising: Top: We see noise in the, v dimensions of our reference
data caused by registration errors. This error shows upragreashake in the reference images.
Bottom: Our algorithm effectively removes this noise in teeanstruction, essentially performing
camera stabilization.

the effect of this denoising by examiningyay slice of our light field, like the one in Figure 9-16.
These slices are often referred to as epipolar plane im&J@3 {n computer vision. To observe
the visual effect of this denoising, the reader should watahaccompanying Gnome video. The
reconstructed camera motion in this video is much smootieer the reference camera motion.
One way to think of this effect is as a kind of video stabiliaat

Our ability to denoise inu, v is limited by the number of input slices we have and the sparsi
of the spectrum we are reconstructing. If the noise afféesparsity of our scene too much, some
of its power might be projected onto existing spikes from signal, changing their estimated
power. We can see some of this in the Gnome data set, whereadfdah®shot noise in our input
is reconstructed with slight structure along the dominaigtrdation of our scene.
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9.8.2 Importance ofContinuous Fourier Recovery

To better understand how operating in the continuous Fodoaain affects our reconstruction,
we examine the impact of our continuous recovery on the oacted Bunny light field. We
choose this light field because our results are almost indisishable from the reference data, so
we can reasonably assume that the sparsity estimated bylbalgbrithm reflects the true sparsity
of the captured scene.

We first compare our sparse continuous recovery in Figuré(8)vith the sparse discrete re-
covery used to initialize our gradient descent (shown inF@®-17(a)). The error in Figure 9-17(a)
shows how existing sparse recovery theory is limited byhleddck of sparsity in the discrete light
field spectrum. However, this result does not necessanlgtis the effects of working in the dis-
crete domain. To better isolate these limits, we generabér@ teconstruction in Figure 9-17(b)
by rounding the coefficients of our final reconstruction FeiQ-17(c) to the nearest discrete fre-
guency positions and removing the sinc tails that resulhftbis rounding. This reconstruction
approximates the discrete spectrum that is closest to ouinemus spectrum while exhibiting the
same sparsity.

As we see in Figure 9-17, the effect of discretization prisgidy our experiment is a kind of
ghosting. To understand why, recall that the discrete leodransform assumes that signals are
periodic in the primal domain, and that given a finite numblefrequencies our reconstruction
will be band limited. As a result, the IDFT will attempt to soth between images at opposite
ends of the primal domain. If we look at Figure 9-18 we can $e® e@ffect across the set of
viewpoints in our light field. When viewpoints near the cerater averaged (smoothed) with their
neighbors the artifact is less noticeable because thajhbers are very similar. However, when
this smoothing wraps around the edges of our aperture, wag&detween more dissimilar images
and the ghosting becomes more severe.

9.8.3 Potential Applications

Our reconstruction from 1D viewpoint trajectories is ditg@pplicable to capture techniques that
seek to acquire a dense 2D sampling of viewpoints on a grid.c0uald, for instance, use it to sig-
nificantly reduce the number of cameras needed by a camewa Aiternatively, for applications
where light fields are captured by a single moving camerah(ssc[23, 37, €6]), the algorithm
could be used to greatly increase the speed of capture. hobthiese cases, the sparse continuous
spectrum we recover could also be used as a highly compresgexsentation of the light field.

The theory of continuous recovery has many potential agitins beyond our reconstruction
from 1D viewpoint segments. Sparsity in the continuous eowdomain is a powerful prior that
is more general than Lambertianality, making it an excitiegv direction for research. While our
choice of initialization uses viewpoint sampling pattethat consist of discrete lines, one can
imagine different initialization strategies that work kvitlifferent input. That input could come
from plenoptic or mask-based light field cameras, or evenescombination of multiview stereo
and image based rendering algorithms. However, contintexm/ery is not necessarily convex,
So proper initialization strategies will be an importand gossibly non-trivial part of applying our
continuous recovery approach to different types of data.
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Initialization Result i ‘ Sinc Removed j Our Reconstruction J

Figure 9-17:Comparison of Our Final Reconstruction in the Continuous Danain to Two
Alternative Reconstructions in the Discrete Domain We compare our result (right) with the
output of only our initialization (left), as well as the diste approximation of our result with sinc
tails removed (middle).

FEFYIITEFE
FET. Frr

rrr
thhhhhﬁh

Frrrrrre
ﬂﬂhhhhhﬂﬂ
FFETIFEF
"””"'
mrrnnnhhﬂ
FEFFYrrrr

Figure 9-18The Ghosting Effect: A demonstration of the ghosting that happens when we simply
remove sinc tails in the frequency domain. We removed the tsiils from the spectrum of the
Stanford Bunny dataset and selected the same inset fromgadimage (we chose the same inset
as in Figure 9-17). This figure shows how the inset changesathe «, v) aperture (note that we
subsampled the 17x17 aperture by 2). Ghosting gets worserdio the edge of the input views.
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9.9 Conclusion

In this chapter, we have made the important observationntatral signals like light fields are
much sparser in the continuous Fourier domain than in theretis Fourier domain, and we have
shown how this difference in sparsity is the result of a wininhg effect. Based on our observations,
we presented an approach to light field reconstruction th@tnazes for sparsity in the continuous
Fourier domain. We then showed how to use this approach teessampling requirements and
improve reconstruction quality by applying it to the taskexdfovering high quality non-Lambertian
light fields from a small number of 1D viewpoint trajectorié¥e believe that our strategy of
optimizing for sparsity in the discrete spectrum will leadeixciting new research in light field
capture and reconstruction. Furthermore, we hope thatlmergations on sparsity in the discrete
vs. continuous domain will have an impact on areas of contjpuia photography beyond light
field reconstruction.
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Chapter 10

Fast In-Vivo MRS Acquisition with Artifact
Suppression

10.1 Introduction

Magnetic Resonance Spectroscopy (MRS) enables non-invasahgsis of the biomolecular con-
tent of the brain. It is an advanced MRI technique that allog/$ouzoom into specific voxels in
the brain and discover the concentration of various meti@solvhich are used as indicators of
diseases like cancer, strokes, seizures, Alzheimer'sisigseautism, etc. These metabolites create
MR signals that appear as frequency peaks in the MRS specRiDn@orrelation Spectroscopy
(COSY) is one type of MRS that allows the unambiguous assighofeMR signals in crowded
spectra and as such can be used in vivo to detect and disenthagpectral overlap of metabo-
lites. Several methods were demonstrated to acquire kchC OSY spectra in vivo [10, 171] and
showed great utility in detecting new molecular biomarlardiseases 9. 46].

Despite its potential, the in vivo use of 2D COSY is not larggdyead due to several challenges
and limitations. The two main challenges are long acqoisitime which requires the patients to
spend a long time in the MRI machine and the presence of agiiathe output images. These are
a direct result of the acquisition of the additional fregeyedimensiory;, which requires sufficient
evolution timet; that significantly prolongs the acquisition time. Typigabhecause of time limi-
tation with in vivo acquisitions, the indire¢t time dimension cannot be sampled long enough and
the correspondingj spectral dimension suffers from severe truncation atsfeesulting from the
ringing tails of diagonal pealésFigure 10-1 shows an example of an in vivo 2D COSY spectrum
where the strong diagonal peaks of NAA, Choline and Creative fage ringing tails that ob-
scure cross-diagonal peaks of important metabolites abmocessing methods such as the use of
filtering windows (QSINE) or prediction algorithms (linearediction) may improve the spectral
appearance but significant artifacts are left and the signadise ratio (SNR) may be downgraded.
Hence, there is a need for a method that recovers the infamalongf; while preserving SNR.

1Thet, time dimension corresponds to the directly measured dirnemsd hence can be sampled long enough to
avoid truncation artifacts along thfe frequency dimension. We refer the reader to [137] for addél background on
MR.
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Figure 10-1:Artifacts in In-Vivo 2D COSY Spectrum: Truncating the signal in time results
ringing tails along thef;, dimension which create artifacts. There artifacts are badistinguish
from cross diagonal peaks of important metabolites labieleed.

2D MRS spectra are highly sparse and the problem of optimintwivo 2D MRS lends itself
naturally to the Sparse Fourier Transform. The Sparse &otliransform can subsample the 2D
COSY signal along the; dimension and hence reduce the acquisition time. Howeleratti-
facts caused by the ringing tails shown in Figure 10-1 sigauifily reduce the sparsity of the 2D
spectrum and hence a straightforward application of thesgdeourier Transform would result in
a poor reconstruction of the MRS peaks. As we have shown ind®et3.1., ringing tails are a
direct result of truncating and discretizing the continsidme signal. Since the frequency peaks
of natural signals like MR are not aligned with the Fouriesalletization gridj.e., peaks lie on
off-grid positions, MR signals that are highly sparse in the contisudgomain, lose there sparsity
in the discrete domain.

In this chapter, we introduce MRS-SFT, a new MRS processingsythat adapts the Sparse
Fourier Transform to the continuous domain in order to rediln® acquisition time while out-
putting clearer images with less clutter and artifactsstineates and suppresses the ringing tails
by recovering the sparsity in the original continuous spewotwhile using the minimum number
of input samples along thie dimension.

We demonstrated the performance of MRS-SFT on 2D COSY foresiagtl multi-voxel ac-
quisitions in brain phantoms (mixture of non-living sang)land healthy human volunteers. We
compared the results obtained by MRS-SFT and other spar¢®dsesuch as compressed sens-
ing (CS) to a fully the sampled FFT and a truncated FFT. We sthatvMRS-SFT reduces the
acquisition time by a factor of three on average. It also ielates thel; truncation artifacts which
improves the SNR by 8 — 14 dB and the resolution of cross-pead — 40% resulting in much
clearer and measurable cross diagonal peaks.
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10.2 MRS-SFT

10.2.1 Algorithm

We will explain our algorithm for general 1D signals. In tledldwing subsection, we will explain
how to use this algorithm to reconstruct a 2D COSY spectrurhzl & be a signal of lengthiV
that isk-sparse in the continuous Fourier domain. Then,

z(t) = \/%zk: a; exp (27;{[]21?)
=0

where {f;}*_, are the continuous positions of frequencies dnd*_, are the complex values
corresponding to these frequencies. The same signal isespathe discrete Fourier domain only
if all of the f;’s happen to be integersse., the large frequency coefficients lm-the-grid

However, for most natural signals like MRS, the large fregqyetpefficients are more likely
to lie off-the-grid We have shown in Section 9.3.1 that while the#egrid frequencies are sparse
in the continuous Fourier domain, they are not sparse in igerate Fourier domain. Recall that
truncating the signal in time is equivalent to multiplyirigniith a rectangular function which re-
sults in a convolution with a sinc function in the frequenoyin. The sinc function has ringing
tails which create truncation artifacts like the ones shawhRigure 10-1. We refer the reader to
Sectior 9.3.1 for a detailed description of this discrettmaprocess and the difference in sparsity
between the continuous and discrete Fourier domains.

MRS-SFT adapts the Sparse Fourier Transform to optimizenfasparsity in the continuous
Fourier domain. The MRS-SFT algorithm has two phases:

(10.1)

e On-Grid Recovery: recovers the spectrum assuming frequencies are only thoaténteger
multiples of the discrete Fourier grid. This step only giessinitial estimate of the spectrum
and alone cannot give a good quality reconstruction

e Off-Grid Recovery: refines the frequencies discovered in the previous stagejiat) them to
take non-integer positions. As such it attempts to apprat@the continuous spectrum.

As input, the algorithm takes only subsamples of the signahich for MRS translates into
a reduction in acquisition time. In both of the above pha#ies,algorithm outputs a list of the
positionsf; and the complex values, of the non-zero frequency coefficients. In the first phase,
the /s are integersi.e., the coefficient lieon-the-grid whereas in the second phase they can be
non-integersi.e., they lieoff-the-grid

PHASE 1: On-Grid Recovery

Our on-grid recovery can be divided into three steps:

1. Frequency BucketizatiorRecall from previous chapters that in this step, the Sparseidfo
Transform by hashes the frequency coefficients in the spcinto buckets. Since the spectrum
is sparsely occupied, many buckets will be empty and canrbplgidiscarded without additional
processing. To hash frequency coefficients into buckets, #8RE uses the aliasing filter presented
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in Sectior 1.1.2. Recall that, this filter works by subsangptime signal in the time domain which
results in aliasing the frequency domain. Aliasing is a fofrhashing in which frequencies equally
spaced byV /p map to the same bucket wheras the subsampling factor.

2. Recovering Frequency Positiors: this step, we aim to find the positions of the non-zero fre-
guency coefficients. For each of the occupied buckets, we waliscover out of all the frequency
coefficients that map into the bucket, which one is the nan-zeefficienti.e., the one that has
energy.

To do this, we bucketize the frequencies with differentsatig filters, so that different fre-
guency coefficients will hash to different buckets each timeother words, we repeat the sub-
sampling again at a different subsampling rate. For exanfple bucketized using a subsampling
factor p;, we repeat the process using a different fagiorThis randomizes the hashing since a
frequency coefficient will hash to buckef mod N /p; in the first bucketization and to different
bucketf mod N /ps in the second bucketization. Recall that the best choicelugaupling is to
use co-prime factor. Co-prime aliasing aliasing guarantestsany two frequencies that collide in
one bucketization will not collide in the other bucketinatj which best randomizes the voting.

We then use the voting based approach presented in Secti@where occupied buckets vote
for the frequencies that map to them. Since the spectrunaisepmost of the buckets do not have
energy and hence only few frequencies get votes each timezBim frequency coefficients will
always get votes since they create energy in the bucketsribpyto. The number of bucketizations
needed typically depends on the sparsity of the signal et pErforming a few bucketizations,
the non-zeros frequency coefficients will have the largastlver of votes. Hence, this gives us a
list of the large frequency coefficienisg., {ﬁ- Yo

3. Recovering the Frequency Valuékw that we have a list of positions of non-zero frequency co-
efficients{f;}%_,, we want to find their complex valuds, }*_,. Given our model in Equaticn 10.1
of a sparse signal: if we know the positions of non-zero feemies (e., f;), then Equation 10.1
becomes a system of linear equations with unknofvn$t_,. Givens > k discrete input samples
of x, we can form an overdetermined system allowing us to solvedoha;.

To construct the system of linear equations, we concaténaiaput time samples into anx 1
vector which we denote as;. We letx  be ak x 1 vector of the frequency coefficients which we
want to recover. Each coefficient, corresponds to one positighof the non-zero frequencies.
Finally, let A be a matrix ofs x k entries. Each row corresponds to an input time sample and
each column corresponds to a non-zero frequency coeffigr@hthe value of each entry will be a
complex exponential:

~ 1 oOrtf
A(t,f) = —— exp (j “f’> (10.2)
Thus, our system of linear equations becomes:

Xg = A}/EK (103)
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The standard minimal square error solver is to multiply ey pseudo-inverse aoX:
%5 = Alxg (10.4)

whereAT is the pseudo-inverse af. Once we calculat&’,, each coefficient will correspond to
the position of a non-zero frequengy This procedure of recovering frequency coefficients given
their positions does not assume that the frequencies @agerg and hence we can use it again in
second phase.

PHASE 2: Off-Grid Recovery

The off-grid recovery process refines the frequencies deseal in the on-grid stage, allowing them
to take non-integer positions.The algorithm formulatés #% an optimization problem and uses
nonlinear gradient descent to estimate the continuousi@msi{ﬁ ¥_, that minimize the square
error between observed discrete samples(of and the reconstruction of these samples given by
our current coefficient positions and values. Thus, therdumction we wish to minimize can be
written as:

'2””") H (10.5)

ezzt: x(t)—\/lﬁ;)&iexp (] ~

where ag; andﬁ are our estimates af; andf;, and the above summation is taken over all the
observed discrete samples. We can rewrite the error of gtisization problem using our vector
notation from Equation 10.3 as:

2
e = |jxs — AATx| (10.6)

To solve the above optimization problem we use a gradierteteesalgorithm based on finite
differences. Each iteration of the algorithm updates tsiedi frequency position$f; }. For each
recovered frequency position |{jﬁ} we fix all other frequencies and shift the position of this
frequency by a small fractional stép< 1. We shift it in the positive and negative directions and
compute the new errar given the new position. We then pick the direction that beistimizes
the errore and change the position of the frequency in that directivve repeat this for every
frequency positior{ /;}. Figure 10-2 shows an example of the gradient descent tiguri

The gradient descent ensures that from iteratiom iteration: + 1, we are always reducing
the residual erroi,e., e+ < () wheree® denotes the error in iteratian The algorithm keeps
iterating over the frequencies until the error falls belomi@imum acceptable errar Once we
have a final list of positions, we can use the same procedweitded in the On-Grid recovery to
recover the values of these frequency coefficients.

2|t is possible that none of the directions can minimize emmowhich case we do not change the position of this
frequency.
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Figure 10-2:0ff-Grid Recovery Using Gradient Descent:Consider a continuous spectrum with
a single peak at positioh = 4.2. The on-grid recovery stage estimates the initial peaktjposi
to the nearest integer gf = 4. We set the fractional step sizeof the gradient descent to 0.1.
In iteration 1, we calculate the errer= 0.97. If we shift the peak to the left, the error becomes
e = 0.99 and if we shift it to the righte = 0.49. Since shifting the peak to the right will reduce
the error the, we shift the peak positionfte= 4.1. We do the same thing in iteration 2 and shift
the peak to the right again. In iteration/3= 4.2 and neither shifting the peak to the left or right
will reduce the error. At this stage the algorithm converged the off-grid position of the peak
has been recovered correctly.

10.2.2 Reconstructing the 2D COSY Spectrum

In the previous section, we introduced a general algorithmiD signals. In this section, we will
show how we use this algorithm to reconstruct 2D COSY speated COSY signal has two time
dimensions:

e i, dimension: The ¢, dimension is directly measurete,, it is fully acquired and hence we
can compute the full 1D FFT along this dimension. Furtheamsince we often have sufficient
t» samples, the truncation artifacts are not as severe as ify ienension. We can simply
multiple thet, samples by the QSINE weighting functions to suppress tlee #hus, for each
value oft;, we multiply thet, samples by the QSINE function and take a 1D FFT altgAt
the end of this step, we get a signal in an intermediate dosiéin f,).

3Note that to compute a full Fourier transform of a 2D mattjxhe FFT algorithm computes 1D FFTs along the
rows ofx followed by 1D FFTs of the columns &
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Figure 10-3lterating Between Recovering Diagonal Peaks and Cross-Diagal Peaks:MRS-
SFT starts by recovering the large diagonal peaks. It thbiratts these peaks and their ringing
tails from the signal which allows it to recover the smalleyss diagonal peaks. Once both peaks
are recovered, MRS-SFT reconstructs the spectrum by regdRenringing tails resulting from
the off-grid positions of the peaks.
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e {; dimension: Since acquiring; increments can be very time consuming, we only acquire a
subset of the; samples in order to reduce the acquisition time. We run our MRS algorithm
only along thet; dimension. Thus, for each value #f we run the 1D MRS-SFT algorithm
overx'(ty, f») to recover the 2D COSY frequency spectrsilf;, f>).

Directly applying the MRS-SFT algorithm for each valuefgfhowever, does not work due to
the huge amplitude difference between the diagonal and-chiegional peaks. The cross-diagonal
peaks might be immersed in the tails of the diagonal pealdsamply running MRS-SFT will
only recover the diagonal peaks but treat the cross-didgaadks as noises. To cope with this, we
need to recover the diagonal peaks first. We start by runhi@dtRS-SFT algorithm but restrict
our recovery to the diagonal peaks. Once we have the Off{é&sttions and values of the diagonal
peaks, we can reconstruct the truncation artifacts andasttlithem from our discrete input signal.
After subtracting the diagonal peaks and their tails, tlsgdiagonal peaks emerge. We can then
run the MRS-SFT algorithm to recover the cross-diagonal peligure 10-3 demonstrates this
process.
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The question that remains is: How to construct and suppimtsdncaﬂon artifacts caused by
the off-grid frequency peaks? Given a list of continuous peglsi, fo1), - - - , (fir, for)} @and their

values{a, - - - , &}, we can compute the discrete Fourier spectrum at mtegenqms( fi, fo):
k
X(fi, ) =D @ x Uy, (fl — hir fo _f2i> (10.7)
1=0

where N; and N, are the total number of increments before subsampling alpagd ¢, respec-
tively. ¥, ,(+, ) is the discretized sinc function which creates the artifai¢tcan be written as:

Uy, (fis f2) = j;:%jﬁ; jj:((gj; exp (—Wj (NlN: 1f1 + NQN; 1f2>> (10.8)

In our final reconstruction of the output spectrum, we singalppress the sinc tails by truncating
the sinc function:

Vv, (s 2) = Wi v, (i f2) X RECT(f, fo) (10.9)

where RECT/, f>) is defined to bd in the rectangle-1 < f, f, < 1. The output of our final
reconstruction without ringing tails can be written as:

k

%o ) = 32 8 x i (A = Fiinfo = Foi) (10.10)

10.3 Methods

10.3.1 Single Voxel Experiments

We performed experiments on a whole-body 3T MR scanner (Tiim Siemens, Erlangen). We
used the COSY-LASER sequence (TR = 1.5 s, TE = 30 ms) [10] toieecgD COSY spectra on
3 volunteers and a brain phantom. The acquired MRS data wappmessed in MATLAB using

four methods:

e MRS-SFT: The method proposed in this chapter useg,60crements on volunteers and 64
increments on brain phantom.

e FFT: Atruncated FFT which uses @pincrements on volunteers and §4ncrements on brain
phantom.

e Full-FFT: Longer sampled FFT which uses 16dncrements on volunteers and 180ncre-
ments on brain phantom.

e Compressive Sensing (CS*:An iterative thresholding based compressive sensing ithgor
which uses 6@, increments on volunteers and G4increments on brain phantom.

“We experimented with several compressive sensing algositind we present here the best compressive sensing
results which we obtained.
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For FFT, Full FFT, and CS, we pre-process the samples by ryittgpwith a QSINE window and
using linear prediction to improve the cross peaks and eduifacts.

10.3.2 Multi Voxel Experiments

Correlation chemical shift imaging was acquired with an badie spiral COSY sequence 11]
which was here improved with MRS-SFT. The experiments werlopaed on a whole-body 3T
MR scanner (Tim Trio, Siemens, Erlangen). Acquisition paeters included: TR = 1.8 s, TE
= 30 ms, 72 spars@ samples out of 252 consecutive samples, 380 points mero filled to
512, 10 ppm spectral window in both and f, dimensions, 4 averages, ax186 voxel matrix,
FOV= 200x200 mm, and an acquisition time of 17 min and 32 s. The acqUMB& data was
post-process in MATLAB using the MRS-SFT with 72samples and the Full-FFT with 252
samples.

The f; dimension of 2D COSY is also particularly susceptible to snatabilities arising from
frequency drifts and patient motion. Post-processing odglinave limited ability to recover spec-
tral quality in particular downgraded water suppressioatdurequency drift or change in metabo-
lite signal amplitude due to shift of voxel position acrogsree series. To alleviate these problems,
we incorporated into our 2D COSY acquisition a recently depetl real-time motion correction
and shim update sequence module.

10.4 MRS Results

10.4.1 Single Voxel Results

The result for phantom data is shown in Figure 10-4 for the foathods described above (MRS-
SFT, FFT, Full-FFT, and CS). The figure shows the 2D MRS specteaovered by each method.
As can be seen, MRS-SFT is able to eliminate the truncatidiaetg while maintaining the cross
diagonal peaks. For example, the metabolite Myo-inosstolearly present only in the MRS-SFT
and Full-FFT results. However, the Full-FFT data requir@8/@4 = 2.8 more time to acquire
all the measurements. The figure also shows that despitg ts#nQSINE window and linear
prediction, the other techniques still suffer from sigrafic truncation artifacts. Note that all four
spectra have the same scaling along the iso-contour lirsehemce changing the window setting
to suppress the artifacts would also eliminate the croggodial peaks.

In the case of in-vivo data,e., experiments ran on human volunteers, the truncatioraatsf
are even more severe as shown in Figure 10-5. In this casenthieg tails are highly prominent
in the FFT, Full-FFT and CS results and hence cause a lot ofdtion artifacts which are hard
to distinguish from the actual cross diagonal peaks. MRS;8BWever, can model and subtract
these ringing tails making the cross diagonal peaks mucle mpparent. For example, Choline
(Cho) is much clearer in the MRS-SFT result as can be seen imd-idls5. In this case, even the
Full-FFT, which requires 160/60 = 2.&7longer measurement time than MRS-SFT, continues to
suffer from artifacts.
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Figure 10-4MRS-SFT Recovery Results on Brain Phantom DataThe figure shows that MRS-
SFT can recover all the metabolites similar to a Full FFT e/ising 180/64=2.8 less samples.
For the same number of samples, a truncated FFT or CS looseddheemetabolites (e.g. Myo)
and degrade the quality of the peaks. The following mettdmhave been labeled for reference:
Choline (Cho), N-Acetylaspartate (NAA), Myo-Inositol (Mya@nd Glutamate (Glu).
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Figure 10-5MRS-SFT Recovery Results on In-Vivo DataThe figure shows that MRS-SFT has
significantly less clutter making it much easier to dististpuartifacts from cross diagonal peaks.
For Full FFT, FFT and CS, it is very hard to distinguish the rhetides from the artifacts and for
FFT and CS, some of the metabolites are lost. The followingabwites have been labeled for
reference: Choline (Cho), N-Acetylaspartate (NAA), Asp@r{@sp), and Glutamine (Glu).

167



Phantom| In Vivo Phantom| In Vivo

MRS-SFT| 13.78 2.05 MRS-SFT| 0.17 0.15
Full-FFT 4.29 -11.7 Full-FFT 0.23 0.24
FFT 0.84 -11.6 FFT 0.15 0.15
CS -0.65 -13.3 CS 0.21 0.13

Table 10.1Signal to Artifact Ratio (dB) Table 10.21ine Width of NAA (ppm)

To quantify the above results, we compute the Signal to &ctiRatio of the cross diagonal
peaks recovered by each of the four methods. The resultshavensin Table 10.1. As can be
seen, MRS-SFT has the highest signal to artifact ratio andwiki8 dB higher than Full-FFT for
phantom data and 14 dB higher for in vivo data. MRS-SFT alsoceslthe average FWHM (Full
Width at Half Maximum) of cross-peaks by 40% for in vivo and2%r phantom compared to the
Full-FFT. For example, the line width of NAA (N-acetyl astse) is reduced from 0.23 ppm to
0.17 ppm in phantom data and from 0.24 ppm to 0.15 ppm in indata as shown in Table 10.2.

10.4.2 Multi Voxel Results

In the case of correlation chemical shift imaging, we denraies that by using MRS-SFT com-
bined with real-time motion correction, we can recover kel MRS spectra which does not
suffer from artifacts and ringing tails. Figures 10-6(ajl &) show the resulting spectra of a4
matrix sampled from the 12616 voxels which were acquired and processed using MRS-SFT and
Full-FFT respectively. For all voxels, MRS-SFT can elimaalbe ¢; truncation artifacts while
reducing the measurement time by a factor of3(852/72).

The above single voxel and multi-voxel results demonsttaeby using MRS-SFT can:

1) Reduce the measurement time by almost a factor of three.
2) Eliminate the t1 truncation artifacts resulting from tireging tails of the diagonal.
3) Improve the SNR and resolution of cross-peaks.

10.5 Conclusion

In this chapter, we presented MRS-SFT; a system that levetageSparse Fourier Transform to
reduce the time the patient spends in an MRI machine whilergéng clearer images for 2D
COSY MRS experiments. Our results indicate the MRS-SFT carceethe acquisition time by a
factor of 3 and suppress truncation artifacts. MRS-SFT i3 sugperior to Compressed Sensing in
terms of reducing thg ringing and enhancing the SNR. Typically, 2D COSY spectranstacted
with conventional FFT use windowing functions such as QS#xH linear prediction to improve
cross-peaks and reduce the artifacts. However, QSINE wiimdpselectively enhances only some
of the cross-peaks and linear prediction reduces the SNRrdrwtluces spiking artifacts. The
Sparse Fourier Transform is less biased in finding the goes&s and, hence provides a more
robust method in dealing with the limitations of in vivo MRS.
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Figure 10-6Multi-Voxel Recovery Results for MRS-SFT vs. Full FFT
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Chapter 11

Fast Multi-Dimensional NMR Acquisition
and Processing

11.1 Introduction

Multi-dimensional NMR (Nuclear Magnetic Resonance) spestiopy is an invaluable biophysical
tool in chemistry, structural biology, and many other aggiions. However, from its introduction
in 1970s, the technique is impeded by long measurement tineasy computations and large
data storage requirements. These problems stem from theerhurgber of data points needed for
qguantifying the frequency domain spectrum with the reqlresolution.

With the traditional systematic data sampling in the timendm, the duration of an NMR
experiment increases exponentially with spectral dineradity and polynomially with resolu-
tion. The rapid development in the field of fast spectrosoeftli non-uniform sampling reduces
the measurement time by decreasing number of the acquitacpdants [17, 33, &5, 140]. Non-
uniform sampling (NUS) has enabled the acquisition andyaigbf practical high-resolution ex-
periments of dimensionality up to 7D [€1, 1.00, 129]. Sucadgbe NUS techniques is explained
by the notion that the NMR spectrum is sparse in the frequdoaoyain, i.e. only a small fraction of
the spectrum contains signals, while the rest contains loagline noise. Moreover, typically the
higher the spectrum dimensionality and resolution aresgaeser the frequency domain spectrum
is. While the numerous NUS spectra reconstruction algostHifier in their underlying assump-
tions, the common theme is that all information about theegpksignals can be obtained from
a relatively small number of measurements, which is lineahe number of signals and nearly
independent on the spectrum dimensionality and resolution

NMR measurements are performed in the time domain and, indke of traditional Fourier
spectroscopy, the time signal is converted to the frequspegtrum by the Discrete Fourier Trans-
forms (DFT). For ad-dimensional spectrum withy points for each spectral dimension, we need
to sampleN¢ experimental points, perform DFT witt(N?log N?) elementary mathematical
operations and allocai@ (N ¢) bytes for spectrum processing, storage, and analysis xaonge,

a moderate-resolution 5D spectrum witix256 for all dimensions requires 4 TB of storage. Even
if such spectrum can be computed, it cannot be easily hamallgg downstream analysis. Algo-
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rithms used for reconstructing the complete spectrum fleeNUS data, require at least the same
and often significantly larger computations and storage tha traditional Fourier based approach.
For example, for the Compressed Sensing (CS) [83, 99], stisa@geV ¢) and the amount of cal-
culations is polynomial oV ¢. Moreover, these algorithms are iterative and thus aredotjmal,
when data do not fit into computer operative memory. Modempaaters meet the computational
and storage requirements for 2D, 3D, and relatively lovoltdgon 4D spectra. Yet, spectra of
higher dimensionality and/or resolution are still beyoadah, unless the analysis is performed in
low dimensional projections or is reduced to small regi@ss$ricted in several spectral dimensions.
In this work, we demonstrate for the first time a new approdldwang reconstruction, storage,
and handling of high dimensionality and resolution spectra

Reconstructing a spectrum with computational complexity storage, which are sub-linear
in respect to the number of points in the full spectrgi?) may only work by using NUS in
the time domain and by computing a sparse representatidreagectrum, i.e. without produc-
ing the complete spectrum at any stage of the procedure aftee tequirement excludes powerful
non-parametric NUS processing algorithms designed towstnact the full spectrum, such as Max-
imum Entropy (ME) [15, 82], Projection Reconstruction (PR3][5Spectroscopy by Integration
of Frequency and Time Domain Information (SIFT) [33, 120]n@wessed Sensing (83, 99], and
Low Rank reconstruction [147]. The parametric methods sscBayesian [21], maximum like-
lihood |31], and multidimensional decomposition (MDD) [9pproximate the spectrum using
a relatively small number of adjustable parameters, and #ra not limited in spectral dimen-
sionality and resolution. However, due to the intrinsiclpeons of choosing the right model and
convergence, the parametric algorithms cannot guaraatgié¢tection of all significant signals in a
large spectrum. Another approach Multidimensional Feurransform (MFT) [93] for large spec-
tra exploits prior knowledge about the signal positionsame or all of the spectral dimensions.
MFT reconstructs only small regions around known spectakp and thus requires less computa-
tions and storage. The Signal Separation Algorithm (SSB8X:]1lrepresents a combination of the
parametric and MFT methods and to some extent inheritsgtod weak points of both. Notably,
the SSA also avoids dealing with the full spectrum matriceBme and frequency domains and
can deal with large spectra. The method was demonstratdngfieresolution 4D spectra with the
corresponding full sizes of tens of gigabytes.

The Sparse Fourier Transform is the first non-parametriréilgn capable of producing a high
quality sparse representation for high resolution and dsimmality spectra. The Sparse Fourier
Transform offers fast processing and requires managealdestbrage, which are sub-linear to the
total number of points in the frequency spectrum. It alsovedl reconstruction of complete high
quality ND spectra of any size and dimensionality. It is masgful for high-resolution spectra of
four and more dimensions, where methods like CS require tadhroomputations and storage.

In this chapter, we will describe the multi-dimensionalsren of the Sparse Fourier Transform
algorithm which we use for NMR spectra. We will also demaaugtiits effectiveness as recovering
NMR spectra from only 6.4% of the input samples through expents on a 4D BEST-HNCOCA
spectrum of ubiquitin.
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Figure 11-1:2D Bucketization Using Co-prime Aliasingon al12 x 12 signal. (a) Subsampling
by a factor of 3 folds (aliases) the spectrum by 3. Frequengith the same color sum up together
in the same bucket. (b) Subsampling by a factor of 4, whichoipreme to 3 ensures that the
frequencies will be bucketized differently avoiding csitins.

11.2 Multi-Dimensional Sparse Fourier Transform

In this section, we adapt the Sparse Fourier Transform i#hgos for multi-dimensional NMR
spectra. We will describe the Sparse Fourier Transformrégo for 2D signals of sizeéV x N.
However, the algorithm can be easily extended to any dimenshe will useX to denote the
2D time signal andX to denote its 2D discrete Fourier transform (DFT). We wilk s, f») to
denote a frequency position a@fl,fg) to denote the spectral value at this frequency position.
For simplicity, we will refer to frequencies that have noragenergyj.ejust noise, as the zero
frequencies and the frequencies that have signal enerdpe amn-zero frequencies.

Recall the two key components of the Sparse Fourier Transépanates : bucketization and
estimation. The bucketization step divides the frequemp®csum into buckets where the value
of each bucket represents the sum of the values of frequetia¢ map to that bucket. Since the
spectrum is sparse, many buckets will be empty and can barded. The algorithm then focuses
on the non-empty buckets and computes the frequenciesavgk alues in those buckets in the
estimation step. Below we describe in details the buckébzatnd estimation techniques we use
for NMR. Some of the concepts below have been introduced wique chapters. However, here
we formalize them for multi-dimensional signals and puntha the context of NMR experimen-
tation.

11.2.1 Multi-Dimensional Frequency Bucketization
Bucketization Using Co-Prime Aliasing

Bucketization through co-prime aliasing previously appdan Chapters 1 arc 7. Here, we for-
malize it for multi-dimensional signals. L& be a sub-sampled version &, i.e., B(#, ) =
/)S(p - t1, p - 1y) wherep is the sub-sampling factor. TheB, the FFT ofB, is an aliased version of
X, i.e.

p—1p—1

B(bi,b) =YY X(bi+i-N/p,by+35-N/p) (11.1)

i=0 j=0
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Figure 11-2:Bucketization Using Discrete Line Projections The top shows the discrete line,
which was sampled and the bottom shows how the frequen@gwajected. Frequencies with the
same color will sum up together in the same bucket. This ig/alfor different slope (a)-(f). Since
the lines are discrete, they wrap around and can result udasendom sampling and projection
patterns as can be seen in (f).

Thus, frequencies equally spaced by an inteap along each dimension map to the same
bucket,i.e., frequency(f,, fo) maps to bucket numbéb,, b;) such that:

(bl, bg) = (f1 mod N/p,fg mod N/p) (112)

Further, recall that the value of each bucket is the sum ofdlhees of only the frequencies that
map to the bucket as can be seen from Equation 11.1. Now thatapped the frequencies into
buckets, we can leverage the fact that the spectrum of Bitexesparse and hence most buckets
have noise and no signal. We compare the energy (i.e., thaitnedg squared) of a bucket with
the noise level and considers all buckets whose energy asvieethreshold to be empty. We then
focus on the occupied buckets and ignore empty buckets.

Recall that most of the occupied buckets will have a singlezemo frequency. However, some
buckets will have more than one non-zero frequency i.elisamts. Recall, that we can resolve
collisions by repeating the bucketization with a differeampling factop’ that is co-prime with
p. Co-prime aliasing guarantees that any two frequenciescibifitle in the first bucketization
will not collide in the second bucketization. Figure 11-bwsis an example of bucketization using
co-prime aliasing of a 2D spectrum.

Bucketization Using Discrete Line Projections

Bucketization using discrete line projections previougpeared in Chapters 1 and 9. We repeat
the formalization of this form of bucketization here and puthe context of multi-dimensional
NMR spectra. Recall that, performing a 1D DFT of a discrete,liyields the projection of the
spectrum onto a corresponding line in the Fourier domaiecBipally, lety be the 1D discrete
line corresponding to a 2D signXl, parameterized by € [0,--- | N — 1]:
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y(t) = X(a1t mod N,ast mod N) (11.3)

where oy, are integers whose greatest common divisor is invertibldutmN such that
0 < aj,as < N. aj/as represents the slope of the line. Thgnthe DFT ofy, is a projection
of X onto this line. That is each point i is a summation of theV frequencies that lie on a
discrete line orthogonal tg as shown in Figure 11-2. Specifically, the frequendigsf;) that
satisfya, fi + asfo = f mod N will project together into the same buckeand sum up tg(f).
Figure 11-2 shows some examples of discrete lines and thgggqtions. Note that discrete lines
from Equation 11.3 wrap around as can be seen in Figuresd)1(€) (f) and hence bucketization
can result in a pseudo random non-uniform sampling as shovdgure 11-2(f). Also note that
this can be extended to any number of dimensions. In that weesean take projections of discrete
lines, planes or hyper-planes.

The above procedure is based on the Fourier projectioa-gieorem [20] and thus bears re-
semblance to the reduced dimensionality techniques andl ieampling [19, 33, &0, 164]. The
important difference, however, is that the sampling defimgé&quation 11.3 is performed on the
Nyquist time domain grid of the full multidimensional exprent, while the traditional radial sam-
pling is off-grid. As it is described in the next section, hrayall sampled point on the grid allows
direct frequency estimation without resorting to the offgnblematic inverse Radon transform
used in the traditional projection reconstruction [101].

Further, discrete projections can benefit from the complaxal echo representation [122],
which improves the sparsity. Specifically, for this repréagon, once we sample a discrete line
passing through the origin (0, 0), we automatically obt&i@ samples of another discrete line
which is symmetric to the first line with respect to one of tixesai.e. if we sample a line with
slopea; /s , we directly get the line with slopea; /«as. For higher dimensions the gain is larger.

If we sample a discrete line in&dimensional signal, we automatically get the samplex’of 1
other discrete lines. For example, in 3D for a discrete linth slope (a1, as, a3), we get the
samples of three other discrete lines which @rev;, as, as), (ag, —an, az), (a1, as, —asz). Note

that (—ay, —as, a3) and(aq, az, —a3) define the same projections and thus only one of these is
needed.

Choosing the Bucketization and Number of Buckets in NMR

The choice of bucketization and number of buckets depentisaosparsity. If the signal h&snon-

zero frequency peaks, then the number of buckets in eacletization should be at leagt(k) or
larger. The discrete projections and aliasing approacivesug a lot of flexibility in choosing the
number of buckets. For example, in a 4D signal, if k is vergéawe can project on 2D discrete
planes to gefv2 buckets or 3D discrete hyper-planes to §jétbuckets. Ifi is small, we can project

on 1D discrete lines to geY buckets. We can also combine discrete projections witlsialigto
accommodate almost any valuefofFor example, we can project on sub-sampled lines as shown
in Figures 11-3(a),(b) to geV /2 or N /3 buckets. We can also project on sub-sampled plane as
shown in Figure 11-3(c) to getV buckets.
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Figure 11-3:Combining Discrete Projections with Aliasing. (a, b) Projection on sub-sampled
discrete line gives number of buckets less than N. (c) Ptioreon two lines (i.e. sub-sampled
plane) gives number of buckets larger than N. Frequencittstihé same color sum up together in
the same bucket.

11.2.2 Multi-Dimensional Frequency Estimation

Here we describe the frequency estimation step we use irotitexd of NMR. Recall that in this
step, for each of the occupied buckets we want to identifycviiequencies created the energy in
these buckets, and what are the values of these frequencies.

To identify the frequencies, we will use the voting basedrapph which we previously in-
troduced in Chapters 1, 3 and 9. In this approach, occupiekkebsigote for the frequencies that
map to them. Since the spectrum is sparse, most of the buaketsmpty and hence only few
frequencies get votes each time. Because by definition theeanfrequencies will end up in
occupied buckets, they will get a vote every time we perfornea bucketization. In practice, a
non-zero frequency may miss the votes in some of the buektetis. This may happen when the
corresponding spectral peak is very weak and/or is camtbilesuperposition with a peak of the
opposite sign. Such negative peaks may be present in thewmetor example, in case of the peak
aliasing when the acquisition is started from half-dwellé¢i Nevertheless, after performing a few
random bucketizations by using co-prime aliasing or digcliees with different slopes, the non-
zero frequencies will have the largest number of votes, vailows the algorithm to identify these
frequencies. An illustrative example of this voting basstingation can be found in Section 9.5.2.

Now that we have a list of non-zero frequendifs f;), we want to estimate the vaIqu{fl, )
of these frequencies. We may use a simple approach analégdisse used in the method of
projection reconstruction [101]. It would estimate theuweabf each non-zero frequency as the
median value of the different buckets to which this freqyewas mapped across the different
bucketizations. However, this approach may yield a pooonstuction in the presence of noise
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and significant signal overlap. Instead, we can computebestimates of the values of the non-
zero frequencies by harnessing the fact that all these éremjes are defined at the same Nyquist
grid. The values of the occupied buckets can be viewed aarlc@mbinations of the values of the

non-zero frequencies. Hence, we can construct a lineagrayst equations:

Ax=b (11.4)

where the unknown vectat corresponds to the values of the non-zero frequencies and th
known vectorb corresponds to the values of the buckets. The matrig a sparse binary matrix
that specifies which frequency values contribute to whiatkbts. In general, this system is over-
determined since the number of occupied buckets can begesdarthe number of non-zero fre-
guencies times the number of bucketizations. Hence, theigolthat minimizes the mean square
error of the frequency values is:

x* = A (11.5)

whereA' is the is the pseudo inverse af This approach of computing the values of non-zero
frequencies is more robust to noise and can correct forehpestimating the falsely presumed
non-zero frequencies to near zero values. This comes ab8ietthe additional computational
complexity associated with computing the pseudo inversavd¥er, since the number of non-zero
frequencies is small, the size of the matAxs still small.

11.3 Materials and Methods

The 4D fully sampled BEST-HNCOCA [105] spectrum of 1.7 mM humhiguitin sample (H20/D20
9:1, pH 4.6) was acquired at 2& on 800 MHz Bruker AVANCE Ill HD spectrometer equipped
with 5 mm CP-TCI probe with the Nyquist grid @6 x 16 x 16 complex time points (acquisition
times 12 ms, 10 ms and 4.4 ms) for th&l, *CO and'*Ca spectral dimensions, respectively. The
amide region of the full reference 4D spectrum (9.7 “HPpm, 174 points) was processed using
NMRPipe software [28]. For the Sparse Fourier Transform ggeing, only the directly detected
dimension was processed in NMRPipe followed by extracticthefsame amide region.

The hyper-complex time domain data were converted to theptmavirtual echo (VE) rep-
resentation [12:2] with dimensiong4 x 32 x 32 x 32. Unlike the original hyper-complex data
representation, the VE is directly amenable for the muthehsional Sparse Fourier Transform
processing and improves the result of the reconstructimm the NUS data. However, the VE re-
lies on the prior knowledge of the phase and requires thalipkase correction in the indirectly
detect dimensions of the ND spectrum to be multiple ¢ite. O,x, 27, - - -).

Two independent sampling tables were generated using ddéstine Projections given by
Equation 11.3. Each of the tables contained 6 orthogongégtions, i.e. (1, 0, 0), (0 1 0), (1
10,(101),(011),((11), and 16 projections obtained bydoam combinations of prime
numbers less than 32 (i.,e. 012357 11 13 17 23 29 31). As describthe theory, these 6 +
16 unique line projections were augmented by 7 + 48 symmptd@ctions, respectively, which
resulted in total 77 line projections in the Sparse Fouri@n$form calculations. In total, each
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magnitude,

Figure 11-4Discrete Line Projections Obtained on 4D BEST-HNCOCA Spectrunof Ubiqui-

tin: at 1H frequency of 8.05 ppm for with prime numbers for lingp@s|ay, as, as] : (a) [1,0,31],

(b) [17,1,23], (c) [31,7,3], (d) [11,1,29]. Horizontal deex lines in each panel indicate the Sparse
Fourier Transform adaptive threshold used for frequeneptification.

NUS data set included 2096 (6.4%) out of total 32K complexetdtomain points in the indirectly
detected dimensions. Figure 11-4 shows a few examples aflttagned discrete line projections.
The number of used samples or discrete lines depends onalstgmf the 3D spectra. Since, for
all 174 directly detected points, the same indirectly depoints are used, the minimum number
of samples needed is bounded by the 3D sub-spectrum witbwrest sparsity, i.e. the largest part
occupied by signals.

Although, the same discrete lines are used in all 3D subtspébe cut-off threshold for select-
ing frequencies varies for different directly detectednp®i The Sparse Fourier Transform adap-
tively sets the cut-off threshold by ensuring that the systé linear equations in Equation 11.4
is well determined. This allows lowering the cut-off and ghmproving sensitivity for regions
with small number of signals. Finally, the Sparse FouriemBform calculations were performed
in MATLAB with the resulting spectrum exported to NMRPipe riwat for comparison with the
reference spectrum.

11.4 Results

We demonstrate the Sparse Fourier Transform ability tongticoct 4D HNCOCA spectrum using
a NUS data set extracted from the complete experiment, whiabquired witth12 x 16 x 16 x 16
complex time points for théH, 1°N, 13CO and¥Ca spectral dimensions, respectively. After con-
ventional Fourier processing of the directly detecteddimension and extraction of the amide
region 9.7 - 7.0H ppm (174 points), the Discrete Line Projections which wesed for bucketiza-
tion selected 262 (6.4%) hyper complex time domain pointeénindirectly detected dimensions.
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In a real experiment, of course, only these selected datdoeed to be acquired, thus reduc-
ing the measurement time to 6.4% of the full experiment. Eiected hyper-complex data points
were converted to the complex virtual echo representabéni2:], which containetl74 x 2096
points out of the full complex array with dimensiohist x 32 x 32 x 32. Then, in the frequency
domain, the Sparse Fourier Transform voting algorithm tified 10588 non-zero points, which
correspond to approximately 100 peaks with 100 data poertpeak in the 4D spectrum. In the
resulting spectrum, only these non-zero intensities wiared, which constitute to less than 0.2 %
of the full reference spectrum.

The running time of the Sparse Fourier Transform is domahéte the time to compute the
projections and perform the pseudo inverse. For the cuergmeriment, the time to compute all
projections in MATLAB is 0.25 ms and the time to perform thepdoinverse is around 150 ms.
CS based algorithms like IST would require between 10-108titn while performing a full FFT
on 3D spectra and hence take between 30-300 ms. The conopalatidvantage of the Sparse
Fourier Transform is expected to increase for higher rémwiiand dimensions. However, a more
thorough analysis of runtime would require implementing 8parse Fourier Transform algorithm
in C/ C++ and is thus is left for future work.

A few points are worth noting. First, the pseudoinverse marcomputed separately for each
point in the directly detected dimension. Thus, the sizehd matrix depends on the number of
peaks in each of the 3D spectra of indirectly detected dimasss opposed to the number of peaks
in the entire 4D spectrum. The pseudoinverse of the matas usour work (c&000 x 250), takes
0.15 sec. Hence, calculating the pseudoinverse fits wetl an desktop computer memory. Even
for a more demanding case of quadruple matrix size requoed farge system or NOESY type
spectrum, the calculation will take less than 40 secondppi@t in the directly detected spectral
dimension. Second, the Sparse Fourier Transform can tigtiieaefit from prior knowledge about
the dark regions in the spectrum in a similar manner to thd Sitlethod. For example, we can
compute the pseudoinverse only for the peaks, which we wapstimate. We can also avoid
collecting votes for frequencies we know do not contain gyer

Figure 11-5 illustrates the Sparse Fourier Transform rsitaoted spectrum using two differ-
ent approaches for the evaluation of the frequency valuespadson of panels (a),(b) and (c),(d)
in Figure 11-5 shows that the spectrum obtained using thexmaversion from Equation 11.5is
very similar to the full reference spectrum. This visual regsion is corroborated by the correla-
tion in Figure 11-5(e) of the cross-peak intensities betwtbe full reference and Sparse Fourier
Transform reconstructed spectrum. It can be seen that malse geaks found in the reference
spectrum (red circles) are faithfully reproduced in therSpd&ourier Transform reconstruction.

Results of spectral reconstructions from NUS may vary fded#nt sampling schedules 12].
In order to check this, we calculated the Sparse Fourierstoam spectrum with an alternative
set of randomly selected projections. The two independpats®e Fourier Transform spectral re-
constructions had comparable quality. Pairwise cor@tatibetween the peak intensities in the
reference spectrum and in the two independent Sparse Fduaesform reconstructions were
very similar as can be seen in Figure 11-6. 98 peaks weretddtercthe reference spectrum using
the peak-picker program from NMRPipe software [38] with tlose level of 0.01 (in the scale
used in Figure 11-5(e),(f)) and peak detection threshd@8.0rhanks to the high spectral sensitiv-
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Figure 11-5NMR Reconstruction Results:4D BEST-HNCOCA spectrum of ubiquitin. Orthog-
onal'H/**N (a, b) and (c, d}>*CO/3Ca projections of fully sampled and FFT processed (a, ¢) and
6.4% NUS processed with the Sparse Fourier Transform (g d).Correlation of peak intensities
measured in the full reference spectrum (abscissa) andp#es& Fourier Transform reconstruc-
tion (ordinate) using the matrix inversion (e) and mediameion (f). Dark red circles and blue
crosses show intensities measured at the positions of geeksd in the reference and Sparse
Fourier Transform spectra, respectively.
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Figure 11-6: Correlation of Peak Intensities in 4D BEST-HNCOCA Spectrum ofUbiquitin.

(a) the peak intensities were measured in the full referaspeetrum (abscissa) and the Sparse
Fourier Transform reconstruction (ordinate) using therimanversion method obtained using
a different set of samples from Figure 11-5. Dark red cireéed blue crosses show intensities
measured at the positions of peaks picked in the refererc&parse Fourier Transform spectra,
respectively. (b) Correlation of peak intensities measumgdo Sparse Fourier Transform recon-
structions calculated using different set of randomly celé projections.

ity for the 1.7 mM ubiquitin sample, the signal dynamic ramgé¢he reference spectrum reached
1:50, which covers the range typically found in the tripleaeance experiments for assignment
and approaches the dynamic range in 4D NOESY spectra.

11.5 Discussion

Practical sensitivity in a spectrum can be defined as a Idveliable signal detection, i.e. separa-
tion of true signals from noise and spectral artefacts. Thakest detected peak in the reference
spectrum has intensity 0.12. Out of total 98, five weakeskpeath intensity up to 0.25 were lost
in the Sparse Fourier Transform reconstruction. No peakseathis level were missing. The ob-
served decrease of the sensitivity seems reasonable eangithat duration of the Sparse Fourier
Transform experiment is only 6.4% of the reference and tipu® fiour times drop of sensitivity is
expected for the Sparse Fourier Transform reconstruction.

In the Sparse Fourier Transform voting algorithm, the festpy detection is limited by the
sensitivity in the individual projections, whose measueeintime was 1/77 of the total Sparse
Fourier Transform experiment time. On the other hand, caetbianalysis of many projections
provides efficient cross-validation of the selected frexpies and allows lowering of the detection
threshold in the individual projections as can be seen imureid 1-6. Similar to the geometric
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analysis of projections (GAPRO) algorithm in APSY [80], tBparse Fourier Transform voting
procedure, recovers large part of the sensitivity thatss$ dtue to short measurement time of the
projections. It should be noted also that in Sparse Four@nsform, the purpose of the frequency
identification voting algorithm is not to find peaks but toes#lfrequencies, which are worth for the
evaluation. The detection limit corresponds to a tradedeffveen the number of points selected
for the evaluation and the requirements for low computaticomplexity and data storage. Thus,
lowering of the detection threshold does not lead to manytiaddl false peaks but only increases
the computational complexity and storage. Whatever thitdsbeel is used, the weakest peaks are
inevitably lost at the frequency identification step of th@ae Fourier Transform algorithm and
consequently have zero intensities in the Sparse Fousiorm reconstruction. Thus, the Sparse
Fourier Transform, as well as many other NUS processing oalstrshould be used with caution
for spectra with high dynamic range and when detection op#eks close to the signal-to-nose
limit is important, e.g. for NOESY's.

The correlation for the peaks picked in the Sparse Four@ndform spectrum is shown in Fig-
ure 11-5(e), (f) with blue crosses. The peaks were detegt®tMRPipe peak-picker with the same
noise and detection threshold parameters as for the reeigectrum. This plot is intended for
revealing peaks in the Sparse Fourier Transform recorigiruthat are not present in the reference
spectrum, i.e. false positives. As it is seen in Figure J€:&], while the median algorithm for the
frequency evaluation resulted in many false peaks, no fesés were detected when the Sparse
Fourier Transform reconstruction was obtained using th&ix@aversion method. As expected,
the median method also provided less accurate peak inenditotably, both methods evaluate
intensity of the same set of frequencies, which are defindteatommon frequency identification
step of the Sparse Fourier Transform algorithms. Thus, tagixninversion method effectively
suppresses the false positive peaks.

Apart from the signals, which were identified by the peaksprcas peaks, the Sparse Fourier
Transform spectrum obtained by the matrix inversion mettwdained a number of signals with
intensities lower than the peak detection cut-off. In additthere were several relatively low
intensity (< 0.3) signals, which didn’t pass the peak qualitecks as can be seen in the example in
Figure 11-7. In most cases such signals were representauyogree point in two or more spectral
dimensions. The reduced dimensionality data collecticgdusy the Sparse Fourier Transform
may be prone to false peak artefacts that are not, in getieeaiesult of a method used to compute
spectra, but are intrinsic for this type of data sampling7[12specially in the case of signals
with high dynamic range. Thus, it is unlikely that the Spafseirier Transform will be able to
produce reconstructions for small and medium size speuaitaare better than the modern NUS-
based techniques, such as CS. On the other hand, the coropatand storage efficiency of
the Sparse Fourier Transform are well suited for the largetsq, i.e. 4Ds and above, where the
full spectral reconstructions and computationally denmagdlgorithms often fail while methods
based on the radial sampling (e.g. APSY) are efficiently usedexample we envisage that Sparse
Fourier Transform will be instrumental in high-dimensibspectra of the Intrinsically Disordered
Proteins that often exhibit long transverse relaxatioreirand heavy peak overlap ['129].

Typically, the number of cross-peaks does not increasespigictrum dimensionality and reso-
lution. Consequently, the number of non-zero frequenciégwis related to the number of cross-
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Figure 11-7:Ca-N Plane from the 4D BEST-HNCOCA Experiment: (a) the Sparse Fourier
Transform reconstruction, (b) the reference spectrum.pléees are plotted at the same contour
level. The first contour is drawn at the level of 0.01 at thdesch Figure 11-5(e),(f). In (a), two
colored peaks exemplify true (left) and false (right) signkn (a), the peaks appearance in the pre-
ceding and subsequent planes in the directly detected HHErdimon is indicated by gray contours.
The dashed gray circles indicate absence of the peaks inlfheeat planes. The false peak, which
has relatively low intensity (0.2), was not picked by thelpp&ker, because it has the distorted
line shape and is represented only by a single point in trectlyr detected dimension. The true
peak has the maximum in the second subsequent plane andcked there in both the reference
and Sparse Fourier Transform spectra.

peaks, only moderately increases proportionally to dinoeradity and resolution of the spectrum.
This makes it possible for the Sparse Fourier Transform talleavery large spectra.

Another good feature of the technique is that the data sagpking the discrete line projec-
tions and voting algorithm used by the Sparse Fourier Taansfor the identification of non-zero
frequencies are fully compatible with the optimization bgremental data collection and analy-
sis 44, 94]. For example we can envisage an approach whenepgmiment is continued until the
list of identified frequencies stabilizes and reaches aplatThus, the number of projections can
be adjusted for every experiment.

11.6 Conclusion

From the NMR perspective, the Sparse Fourier TransformHerfirst time combines the best
features of so far distinctly different approaches knowredsiced dimensionality and compressed
sensing. The former is robust and computationally veryiefiit; the later provides highest quality
spectral reconstructions. In this chapter, we presented\tiR tailored version of the Sparse
Fourier Transform algorithm and demonstrated its perforcedor 4D BEST-HNCOCA spectrum
of ubiquitin.
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Chapter 12

Conclusion

The widespread use of the Fourier transform coupled witlethergence of big data applications
has generated a pressing need for new algorithms that certtpuFourier transform in sublinear
time, faster than the FFT algorithm. This thesis addredsissnieed by developing the Sparse
Fourier Transform algorithms and building practical sysehat use these algorithms to solve key
problems in the areas of wireless networks, mobile systeamputer graphics, medical imaging,
biochemistry and digital circuits.

The Sparse Fourier Transform algorithms are a family ofisghl time algorithms that lever-
age the sparsity of the signals in the frequency domain topcoenthe Fourier transform faster
than the FFT. The thesis presents state-of-the-art atgositwith the lowest runtime complexity
known to date. Specifically, these algorithms rurfit¥ log n) time for exactly sparse signals and
O(klognlog(n/k)) time for approximately sparse signals. The algorithms as¢ef than FFT,
which has a runtime o) (n log n), for any sparsityc = o(n). The thesis also presents algorithms
with the optimalsampling complexity for average case inputs. These algugtuse the minimum
number of input samplegge., O(k) samples for exactly sparse signals &nd: log n) samples for
approximately sparse signals, and hence reduce acqnisigd.

The thesis also develops software and hardware systemevbedge the Sparse Fourier Trans-
form to address challenges in practical applications. @palty, in the area of wireless networks,
the thesis shows how to use commodity hardware to build degseaeceiver that captures GHz-
wide signals that are>6 larger than its digital sampling rate. The thesis also show to design a
GPS receiver that consumes Bwer power on mobile systems. In the area of computer geaphi
the thesis demonstrates that reconstructing light fieldygsaising the Sparse Fourier Transform
reduces sampling requirements and improves image reaaetistr quality. The thesis also shows
how the Sparse Fourier Transform can be used to generaterdMBRS images while reducing the
time the patient spends in an MRI machine. In the area of binddtgy, the thesis demonstrates
that the Sparse Fourier Transform can reduce an NMR expetitnge by16 x. Finally, the thesis
presents a Sparse Fourier Transform chip that deliversatigest Fourier transform chip to date
for sparse data while consumidgx less power than traditional FFT chips.

This thesis lays the foundational grounds of the Sparsei€éotiransform. It develops a theo-
retical and practical framework which researchers can ndéaild on to improve the performance
of their specific applications.

185



12.1 Future Directions

Looking forward, the Sparse Fourier Transform can help eskifurther challenges in building
practical systems that benefit many more applications,iwhat has been demonstrated in this
thesis. Below we highlight some of the future applicationthefSparse Fourier Transform.

e Discovering the Brain’s Connectivitygnderstanding the structure and function of the connec-
tions between neurons in the brain is a major ongoing reBgmaject. High dimensional MRI
tests like 6D diffusion MRI enable discovering the commutiaachannels between different
parts of the brain. However, going to higher dimensions iregcollecting more data, which
translates into the patient spending much longer time inMR&¢ machine. Similar to MRS,
diffusion MRI data is sparse in the frequency domain. Herloe,Sparse Fourier Transform
can help enable high dimensional MRI tests using very fewsauhples of the data to reduce
the time the patient spends in the machine.

e Optical Coherence Tomography (OCTOCT is an established medical imaging technique that
uses optical scattering in biological tissues to provigedostic images of the eye, the retina,
the coronary arteries, the face, and the finger tips. OCT gé&gea lot of data which makes it
difficult to provide the images to doctors in realtime. HoeeVOCT images are generated in
the frequency domain which is typically sparse and henceébeaefit from the Sparse Fourier
Transform to quickly process the data and generate the alediages in realtime.

¢ DNA Sequencingfhe post processing of DNA sequencing data is typically eemputational
intensive and there are many attempts in computationabgyoto create faster processing
tools. Applications like antibody sequence alignment negfinding the right genes that match
the DNA sequence and discovering where each gene starte setfuence. This problem is
very similar to the GPS code alignment problem from Cherterdlence it can benefit from
the Sparse Fourier Transform to speed up the sequence aligmpmoblem.

e Radio AstronomyThe Square Kilometer Array (SKA) is a radio telescope in tgy@ent

in Australia and South Africa. It spreads over an area of au@ae kilometer providing the
highest resolution images ever captured in astronomy. Tergée images of the sky, SKA
performs a Fourier transform over the sampled data. Howéveramount of incoming data
will be larger than terabytes per second which is hard togssavith today’s computational
power. The output images are sparse since at any point irthiene are few events occurring in
the universe. Thus, the Sparse Fourier Transform can helkrgte these images much faster
than FFT which significantly reduces the required comporteaiii load.

e Wireless LocalizationAntenna arrays have become the key component in localizingdrF
vices in a variety of applications such as indoor navigadod location-based marketing. In
these systems, a Fourier transform is computed across mglesafrom the antennas in or-
der to identify the spatial direction along which a wirelegmal arrives. Large antenna arrays
provide high resolution in measuring the angle of arrivaldme very costly since they require
a large number of synchronized RF-receivers. The directfoarrival of wireless signals is
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typically sparse and hence we can use the Sparse Fouriesféranto subsample the antennas
and reduce the number of receivers needed compute theiairectarrival.

e Radar SystemdRadar chirps are signals in which the frequency sweeps oeebdahdwidth
of operation during a given time period. Detecting and agagichirps transmitted by an un-
known source is a challenging problem in radar. Since tharpaters of the chirp are unknown,
it is hard to capture the signal. For example, if we do not ktleevfrequency which the chirp
is sweeping, the chirp can be anywhere in a multi-GHz spetbut only sweeping over few
MHz of bandwidth. Moreover, if we do not know the sweepingdtion of chirp (e.g. the slope
of linear sweep), we cannot pick the right time window overiclihwe should perform the
Fourier transform. Chirps, however, are extremely sparéequency domain. Exploiting this
sparsity would allow us to design radar acquisition systesttslower computational overhead
and the high accuracy.

In addition to the above applications, the Sparse Fouriengfiorm can be leveraged to speed
up processes like feature extraction in speech recogniiptical proximity correction (OPC) in
computational lithography, seismic data analysis in od gas exploration, analysis of boolean
functions, proximity queries in databases, anomaly dieteat data centers, as well as many more
applications.
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Appendix A

Proofs

A.1 Proof of Lemma 3.2.11

Lemma 3.2.1Let S be the support of the largestcoefficients ofi, andi_g contain the rest. Then
foranye < 1,

A € k
P, [l i > el 43221 < 0 (1),

™

Proof. By the definitions in Section 2.2,

T = T 0877 Gonsl) = Toti-0)-00® "/ Coa(i

Oo'b

Consider the case thatis zero everywhere but axs0supp(]m) ={o(i—10b)}. Thenj is the
convolution of G and P, , ,z, and G is symmetric, so

@a(i—b)—omb(i) = (G * PO"T bx)a(z b)— 055 ( G—o b 'L)PJT bxg(2 b)
— G 7'(77,'

Oob

which shows that; = 7, in this case. But/ — i, is linear inZ, so in general we can assuriie= 0
and bounqx/’ Slnce‘xl‘ - ’Zha b /Goo'b ‘ < ’Zha b 7‘)|/(1 - 5) ‘@G(i_b)_oa,b(i)‘/(l - 5)’ It IS
sufficient to boundy,;—s)—o, (5)|-
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DefineT = {j € [n] | (i — b —j) € [-2n/B,2n/B]}. We have that

2

1
L

—

|@a(z‘—b)—og(i)|2 = (PU,T,bI)tGa(i*b)*t*%,b(i)

t=0

n—1 e - 2
= 1D (Porp%)aj Goli—b—j)— o0, (i)

j=0

2 2
< 2 Z(‘PO',T,b'I)Uj Ga(i—b—j)—o(,,b(i) + 2 Z(PU,T,bx)O'j Ga(i—b—j)—o(,ﬁ;,(i)
jET igT
2 2
2(1+ 5)2 Z(Pombx)aj +26° Z( o,T bx)
jeT j¢T

In the last step, the left term follows fron@,| < 1 + ¢ for all a. The right term is because for
jg& T,|lo(i—b—j)—0,4(i) > |o(i —b—13)] — |ogs(i)| > 2n/B — n/(2B) > n/B, and
|G,| < é§for|a| > n/B. By Claim 2.2.6, this becomes:

2

Do (i—b)—op s ()| < 2(146)? +20%||2||7.

ZIJ o

jeT

Define V' = ’ZjeT :%jw“”’ . As a choice over, V is the energy of a random Fourier coefficient
of the vectorir so we can bound the expectation over

E[V] = |2zl

Now, for each coordinatg # i — b, Pr, ,[j € T] < 8/B by Lemma. 2.2.7. ThuBr, ,[S N T #
()] < 8k/B, so with probabilityl — 8%/B overo andb we have

12713 = ll2r\s]l2-
Let £ be the event that this occurs, gas 0 with probability8% /B and1 otherwise. We have
B [BV]=E [Elar|3] = E [Elinsl] < E [lonsl] -

Furthermore, we know

E[BV] < E [lansl3] = X |4 Pr(o(i — b~ ) € [~2n/B,2n/B]

. ’ igs

8.

< EHI—SH%

by Lemma 2.2.7. Therefore, by Markov’s inequality and a arbound, we have for ang' > 0
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that

% K
Pr [V > 8BH5:_5||§] <P [E_OUEV >CE [EV]] <82 +1/C,

Hence

<8£+1/C.

. C . .
Pt |lt6-0)-onsto 2 165 (1 + 02 as +20%2]3] < 87

ReplacingC with e B/(32k) and using#; — #;| < |Jo(i—b)—o,.,()|/(1 — &) gives

NI e (1+6\° . 2 . k
P [m’ ~aP 2 o (155) sl 1_552llx||%] < (8432000

which implies the result. ]

A.2 Proof of Lemma 3.2.2

Lemma 3.2.2Define £ = \/§||§;_S||§ + 302||2||3 to be the error tolerated in Lemrna 3.2.1. Then
forany: € [n] with |Z;| > 4F,

Pr[z¢1]g0<€’;+:d>

Proof. With probability at least — O (%), |2/| > |#;|— E > 3E. Inthis caséz,_, ;)| > 3(1—0)E.
Thus it is sufficient to show that, with probability at least O(-;), there are at mostk locations
j € [B] with 2| > 3(1 — §)E. Since eaclt; corresponds to:/B locations in[n|, we will
show that with probability at least — O(-;), there are at mosfkn/B locations; € [n] with
|2/] > 3(1 - 0)°E.

LetU ={j €[n]||3| > E},andV = {j € [n] | |3/ — &;| > E'}. Therefore{j € [n] | |2 >
2E} C UU V. Since2 < 3(1 — §)?, we have

{113 =301 - 0B} <UL V.

We also know

l2_s]|3
U] < k+ | E2H2 < k(14 1/€)
and by Lemma 3.2.1,
kn
E < —).
IVl < 0(5)
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Thus by Markov's inequalitfr(| V| > 1dk%] < O(%), or

1 . n 1
> —dk— < O(=).
Pr[|[UU V]| > zdkB +k(1+1/e)] < O(Ed)

Since the RHS is only meaningful far= €2(1/¢) we can assumédk % > k(1 + 1/e). Therefore

n 1
> — | < — .
Pr(|U U Vl_dkB]_O<€d)

and thus )
Pr{l{y € [B] [ 5] 2 3(1 = O)E}| > kd] < O(—).

Hence a union bound over this and the probability that- 7;| < F gives

as desired. O

A.3 Proof of Lemma 4.2.4

Lemma 4.2.4SupposeB dividesn. The outputu of HASHTOBINS satisfies

—

B= Y (v—2),(Chsa)

ho‘,b(i):j

_Oaﬁb(l—)wam + 5H3H1

Let¢ = |{i € supp(Z) | Eop(i)}|- The running time of ASHTOBINS is O(£ log(n/d) + ||Zlo +
¢log(n/d)).

Proof. Define the flat window function§ = G5, andG’ = G’ 5... We have

Y=G -P,opr=Gx*P, .7
o~ —_—

y’:@\’*PU’mb(x—z)%—(/G\—@)*m

By Claim 2.2.6, the coordinates @m andz have the same magnitudes, just different ordering
and phase. Therefore

(G = G % Pyaplloo <G = G'llool| Pranzll < 621
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and hence

~

G=Yip= 2. GilPous(®=2)) 5, %02
ltl<n/(2B)

- > G-, ) Poan(® — 2)), o £ 8]
|00 (8)—in/ B| <n/(2B)
= Y G- e o],

ho‘,b(i):j

as desired.
We can compute HSHTOBINS via the following method:

1. Computey with [|y[lo = O(£ log(n/d)) in O(£ log(n/d)) time.
2. Computey € C” given byv; = 37, yi1 5.

3. Because3 dividesn, by the definition of the Fourier transform (see also Claim&fm Chap-
ter &) we havey;,, 5 = 9 for all j. Hence we can compute it with A-dimensional FFT in
O(Blog B) time.

4. For each coordinaté € supp(z), decreas@jzy, (i) by @\’_%’b(i)zw“”. This takesO(||Z||o +

Clog(n/0)) time, since computingff’_aa’b(i) takes O(log(n/¢)) time if E.z (i) holds andO(1)
otherwise.

]

A.4 Proof of Lemma4.2.5

Lemma 4.2.5Consider any; € S such that neitheE,,; () nor E.z (i) holds. Letj = h, ; (7).
Then

round (i /a;))Qi) — i (mod n),
m
roundaj) =7; — /Z\i,
andj € J.

Proof. We know that||z||; < k||Z]|« < kL < nL. Then by Lemma 4.2.4 anél,,;(¢) not holding,

—

U = (z — z)i@_oa,b(i) + dnL.

Because, (i) does not hold(’_,_ i) = 1, S0

L —

U = (z — 2), £ énL. (A.1)

Similarly,
U = (z — z),w”" £ 6nL
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, the phase is

Then becausenL < 1 < (x/—\z) ;

¢(1;) = 0 & sin"'(0nL) = 0 & 26nL

and¢(u)) = —oi®* + 26nL. Thusé(,/uf) = 0ir + 46nL = 0i®" + 1/n by the choice of.
Therefore n
rounc(gb(aj/ﬁ;)?) =04 (mod n).
s

Also, by Equation (A.1), roundi;) = z; — z;. Finally, [round%;)| = |z; — z| > 1, so|u;| >
1/2. Thusj € J. O

A.5 Proof of Lemma 4.3.2

Lemma 4.3.2Let a € [n] uniformly at random B divide n, and the other parameters be arbitrary
in

u = HASHTOBINS(z, 2, P, 4., B, 9, ).

Then for any: € [n] with j = h, (i) and none ofF,,;;(7), E,z (1), Or Episc(7) holding,

E[‘u — r’w

Proof. Let G’ = G’ 5. Let T = h3(j) \ {i}. We have that N S = {} andG'_,_, ;) = 1. By
Lemma 4.2.4,

7(2]' - E/iwaai = Z @,Og(i/)i\/i/wagi/ + 5”@”1
el

Because the i’ are distinct fori’ € T, we have by Parseval’s theorem

2

= Y (G iy7s)? < Jla7ll3

i'eT

—~ ~ y
E / / aot
Ig’ G _oa(i/)x U

el

Since|X + Y|° <2|X|*+2|Y|*forany X, Y, we get

I(EE[ /’llj — a?’iw

aot

2 o~

| < 2llar 3 + 20|31
< 2Bn(@, k) /(aB) + 20|31
< 20°/(aB).
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A.6 Proof of Lemma 4.3.4

Lemma 4.3.4Leti € S. Suppose none di,,; (%), B,z (i), andE, (i) hold, and lef = h, ; (7).
Consider any run of DCATEINNERWith 7, ,(7) € [[;, [; + w] . Letf > 0 be a parameter such that

p=
afe

for C larger than some fixed constant. Then,(i) € [/}, I} + 4w/t] with probability at least
1 — th(Rloc)’

Proof. LetT = 7, (i) = (i — b) (mod n), and for any; € [n] define

0 = 21(] +0b) (mod 27)
n

J
s0d; = Zoi. Letg = O(f'/%), and ¢’ = B2 = O(1/4%).

To get the result, we dividg;, [; + w] into ¢ “regions”, @, = [l; + 7w, ; + 4w] for ¢ € [t].
We will first show that in each round, ¢; is close to36* with 1 — ¢ probability. This will imply
that @), gets a “vote,” meaning; , increases, with — g probability for theq’ with 7 € Q. It
will also imply thatv; , increases with only probability when ¢ — ¢'| > 3. ThenR,,. rounds will
suffice to separate the two with- f ~?(F.c) probability. We get that with — ¢f ~*(Fee) probability,
the recovered)* has|q — ¢'| < 3for all ¢ € Q*. If we take the minimuny € @* and the next
three subregions, we findto within 4 regions, orw /¢ locations, as desired.

In any roundr, definet = %("” anda = a,. We have by Lemma 4.2.2 and that S that

R ~ 12 0 2k
) aci ) o
E[‘u] W] ] = 2aB ~ Bae
2 2~
- 0'“2 = c?'"’”'i’?-

Note thatp(w??) = —af*. Thus for anyp > 0, with probability1l — p we have

/

<./ 2 15
= Ci’p T4
J6(3) = (9(") — ) < sin~' (1 57-)

where||z — y||o = min,ez |z — y + 27| denotes the “circular distance” betweerandy. The
analogous fact holds fap(u’;) relative to¢(z’;) — (a + 3)0%. Therefore with at least — 2p

)
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probability,
e, — 560 = 16(3) — 9(7,) — 56
H () — a02)) — (6(75) — (G(F) — (a+ B)02)) HO
< 6(5) — (6(F) — a2l + 16(T5) — (6(75) — (o + Ao

< QSin_l(,/ Cz’p)
2

by the triangle inequality. Thus for any= ©(g) andp = O(g), we can set’’ = Py
0O(1/¢?) so that

e — 8020 < sm/2 (A.2)

with probability at least — 2p.
Equation (A.2) shows that; is a good estimate farwith good probability. We will now show
that this means the approprlate “reglo@q gets a “vote” with “large” probability.

For theq’ with 7 € [[; + “ 2w, [; + Lw], we have thain; , = I, + Y= satisfies

|7 qu|_2t
SO 9
T W
0r — < ——.
0,0 < 22

Hence by Equation (A 2), the triangle inequality, and theich of B < 2%,

lej = Bbjello < IICj — B07]lo + 1807 — 805,410
Brw
< - [
2 + nt
LT em
- 2 2

= STT.

Thus,v;  will increase in each round with probability at ledst 2p.
Now, considelg with |¢ — ¢/| > 3. Then|r — m; ,| > & 2, and (from the definition of > )
we have

7sn  3sn
Blr—mjql > —>—. (A.3)
8 4
We now consider two cases. First, suppose|that m; ,| < %. In this case, from the definition
of 3 it follows that
Bl —mjq < nj2.
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Together with Equation (A.3) this implies

Pr[8(r — m; ) mod n € [—3sn/4,3sn/4]] = 0.

On the other hand, suppose that- m; ,| > %. In this case, we use Lemrna 4.3.3 with param-
etersl = 3sn/2, m = £%, ¢ = 2L = (7 — m; ,) andn = n, to conclude that

Pr[B(t — m;,) mod n € [—-3sn/4,3sn/4]] < —
s
<242 1o

< —+9s
< 10s
where we used that| < w < n/B, the assumptior; < |i|,t > 1, s < 1, and thats* > 6/B
(because = O(g) and B = w(1/g?)).
Thus in either case, with probability at ledst 10s we have

2r5(my,g —7) 2w 3sn 3

1805, — Bl = || lo > Pt

for any ¢ with |¢ — ¢'| > 3. Therefore we have
lej = BO54llo = 188, — B0 llo — llej — BO7lo > sm

with probability at least — 10s — 2p, andv; 4 is not incremented.

To summarize: in each round; , is incremented with probability at least— 2p andv; , is
incremented with probability at mo$0s + 2p for |¢ — ¢’| > 3. The probabilities corresponding
to different rounds are independent.

Sets = ¢/20 andp = g/4. Thenv; , is incremented with probability at leakt- ¢ andv; , is
incremented with probability less thagn Then afterR,,. rounds, ifl¢ — ¢'| > 3,

Rloc

Pr(v;, > Rie/2] < (RZOC s

>gRloc/2 S (4g)Rloc/2 = fQ(Rlo(:)

for g = f1/3/4. Similarly,
Pr[v; o < Ripe/2) < fOR10c),

Hence with probability at leagt— tf*(") we haveq’ € Q* and|q — ¢'| < 3 forall ¢ € Q*. But
thenr — If € [0,4w/t] as desired.

BecauseE[|{i € supp(2) | E,q(i)}|]] = «f/z]lo, the expected running time i© (R Bt +
Rioc 2 log(n/0) + Riel|Z]lo(1 + alog(n/5))). O
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A.7 Proof of Lemma 4.3.5

Lemma 4.3.5SupposeB = % for C larger than some fixed constant. The proceduneATES-
IGNAL returns a sel of size|L| < B such that for any € S, Pr[i € L] > 1 — O(«). Moreover
the procedure runs in expected time

0((5103;(%/5) + [IZ[lo(1 + alog(n/d))) log(n/ B)).

Proof. Consider any € S such that none oF..; (i), E.g (i), and E,.;s.(¢) hold, as happens with
probabilityl — O(«).

Sett = logn,t' = t/4 and R, = O(log, ,(t/)). Letwy = n/B andwp = wy/(t')"~",
S0 wp,,,,+1 < 1for Dye = log,(wp + 1) < t. In each roundD, Lemma 4.3.4 implies that
if 7,,(1) € 117,17 + wp] thenm, (i) € [, 1°"Y 4+ wp,,] with probability at least
1 — o) = 1 — o/t. By a union bound, with probablllty at least— o we haver, ;(i) €
(1D Pt ] = {1 Y Thusi = a (17 Y) € L.

SinceRipe Dynaz = O(log (/) log,(n/B)) = O(log(n/B)), the running time is

O(Dmam(Rloci 1Og(n/6) + RlocH/Z\HO(l + alog(”/é))))

= 0((510g(n/5) +1Zllo(1 + alog(n/d))) log(n/B)).

A.8 Proof of Lemma 4.3.6

Lemma 4.3.6For any: € L,

2 > MQ] < G*Q(Rcst)

if B> =& for some constant’.

Proof. Definee, = ﬂ(”w—‘“‘” z'; in each roundr. Suppose none oEw”( ), Eo(g(z'), and
E,Eom( ) hold, as happens with probability— O(«). Then by Lemma 4.3.2,

2

P 2k 5 _ 2 5
Elle ] < 2— < —
aTH@H— aB ozeB'u C"u

Hence with3/4 — O(«) > 5/8 probability in total,
e < 2 < 4?2
" C
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for sufficiently largeC. Then with probability at least — e~*(%«t), both of the following occur:

2

median reale.)| < u?/2

2
’meglian imagle,)| < u?/2.

If this is the case, thepmedian, e,|> < p2. Sincet; = #'; + median e,, the result follows. [

A.9 Proof of Lemma4.3.7

Lemma 4.3.7Let R.,; > C'log % for some constant’ and parameters, f > 0. Then if ESTI-
MATE VALUES is run with inputk’ = 3k, it returnsw;y for |J| = 3k satisfying

Err®(z] — @y, fk) < Exr®(z), k) + O(kp?)
with probability at least — ~.

Proof. By Lemma 4.3.5, each indexe L has

Let U = n—— ‘s ©?}. With probability1 —~, | U| < fk; assume this happens. Then

(2" — @) oll2 < 12 (A.4)

Let T' contain the to@% coordinates ofi;, ;. By the analysis of Count-Sketch (most specifically,
Theorem 3.1 of [146]), thé,, guarantee in Equation (A.4) means that

|2 o — @r||2 < Brr® (2o, k) + 3kpu?. (A.5)

BecauseJ is the top3k > (2 + f)k coordinates ofv;,, 7' C J. LetJ' = J\ (T U U), so|J'| < k.
Then

Err? ( —wy, fk) < ”IL\U wJ\ng
= |12’ ooy — wrll3 + (2" — @) [I3
< o' o —wrl5 + 1T (@ — @) ll2
< Er? (IE o, k) + 3kp® + kp?

= B’ (2 v, k) + O(kp?)

where we used Equations A.4 and A.5. ]
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A.10 Proof of Lemma 4.3.8

Lemma 4.3.8Definez(" = z — 2("). Consider any one loop of SPARSEFFT, running with
parameter$B, k, o) = (B, k., «,.) such thatB > % for some(C' larger than some fixed constant.
Then for anyf > 0,

Err?(z0HY) k) < (14 €) Err?(2"), k) 4+ 0(e6®n|Z||?)

with probabilityl — O(«/f), and the running time is

O((IZ7llo(1 + arlog(n/4)) + - log(n/8))(105 - +log(n/B)).

Proof. We useR.;; = O(log %) = O(log i) rounds inside ETIMATEVALUES.

The running time for IDCATESIGNAL is

0((B log(n/8) + 2" [lo(1 + alog(n/d))) log(n/B)),

and for ESTIMATEVALUES is

O(( 10g(n/8) + |20V o(1 + alog(n/5))) log )

for a total running time as given.

Recall that in round, p> = £(Err®(2(, k) 4 6%n||2||2) andS = {i € [n] | ‘f}”)g > 1%}, By
Lemma 4.3.5, each € S lies in L, with probability at least — O(«a). Hence|S \ L| < fk with
probability at least — O(«/f). Then

Errg(f[(,:])\p fk) < ||fl7[n]\ LUS)H%
< Err (f[(rf])\(LuS)7 k) + klm[(nrl)\(LUS)||<2>O

< Err (x[( ])\L, k) + k. (A.6)

Let w = 20+ — 20 = z() _ 2"+ py the vector recovered bysEIMATEVALUES. Then
supp(w) C L, so

Err? (20, 2fk) = Err® (2" — @, 2fk)
< Err (x[(r)\L,fk) +Er* (3" — @, fk)
< Er®(3() . k) + En® (3" k) + O (kp?)
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by Lemme 4.3.7. But by Equation (A.6), this gives

Err? (20D 2fk) < Eer(E[(nﬁ)\L, k) + B (27, k) + O(kp?)
< Err*(2", k) + O(kp?)
— (14 0(0) B3, k) + O(es*nll3]2).

The result follows from rescalinfande by constant factors. m

A.11 Proof of Theorem 4.3.9

Theorem 4.3.9With 2/3 probability, ARSEFFT recoverg**+1 such that
& = 20, < (14 ) Bxe(@, k) + o]l

in O(% log(n/k) log(n/5)) time.

Proof. Definef, = O(1/r?) soy. f, < 1/4. ChooseR so[l,<pfr < 1/k < [l,<g/f;. Then
R = O(log k/loglog k), sincell,<x f» < (frs2)®/? = (2/R)%.

Sete, = fre, ar = O(f2), ky = kllic, fi» B, = O(%a.f,). ThenB, = w(-%), so for
sufficiently large constant the constraint of Lemma 4.3.8a8sfied. For appropriétTe constants,
Lemma 4.3.8 says that in each round

Err? (20 k) = Bt (30D £k < (14 fo) B2 (37 k) 4+ O(fed®n||Z]2) (A7)
with probability at least — f,.. The error accumulates, so in roungve have

Eer(?U(T), k) < Err2(§, k) H(l + fie) + Z O(fre52n||§||%) H (1+ fie)

1 <r 1 <r 1<g<r
with probability at least — 3, _, f; > 3/4. Hence in the end, sindg; .1 = k[[;<z f; < 1,

[TV = Ear® (@Y, kpyr) < Erc®(2, k) [T (1 + fie) + O(Red®n|2(7) [T (1 + fie)

1<R 1<R

with probability at leas8/4. We also have

[1(+ fie) < e il < ¢

making

7

[TO+fie) <1 4+ed fie <1+ 2e
Thus we get the approximation factor
|17 = 25 < (14 2¢) Err® (2, k) + O((log k)ed®n||Z|7)
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with at least3/4 probability. Rescaling by poly(n), using||Z||? < n||Z|., and taking the square
root gives the desired
17 — 2By < (14 €) Erx(3, k) + 0|2 |-
Now we analyze the running time. The update™) — z2(") in roundr has support siz&k,, so in
roundr
1270 < 373k = O(k).
i<r
Thus the expected running time in rounds

O((k(1 + oy log(n/d)) + fr log(n/d))(log +log(n/B)))

€,

= O((k+ f;log(n/é) + Gl; log(n/5))(logz2 + log(ne/k) + logr))
= O((k+ !:12 log(n/d))(log r + log(n/k)))

We split the terms multiplying and-%; log(n/¢§), and sum over. First,

R
> (logr +log(n/k)) < Rlog R+ Rlog(n/k)

. < O(log k + log k log(n/k))
= O(log klog(n/k)).

Next,

z_:l Tlg(log r+log(n/k)) = O(log(n/k))

Thus the total running time is

O(klogklog(n/k) + lz log(n/d)log(n/k)) = O(]Z log(n/d)log(n/k)).

A.12 Proof of Lemma5.2.2

Lemma 5.2.2The probability that any 1-sparsity test invoked by the athm is incorrect is at
mostO(1/n(¢=5)/2),
To prove Lemma 5.2.2, we first need the following lemma.

Lemma A.12.1. Let y € C™ be drawn from a permutation invariant distribution with > 2
nonzero values. Lel’ = [2¢]. Then the probability that there existsjasuch that||y’|lo < 1 and
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(7 — §')r = 0 is at mostc (mC_T)C_Q.

Proof. Let A = Fr be the first2¢ rows of the inverse Fourier matrix. Because a&awyx 2c¢
submatrix ofA is Vandermonde and hence non-singular, the system of lewaations

Az =10

has at most one-sparse solution in, for anyb.

If r < c—1,then|ly — ¢'l[lo < ¢s0A(y —¢') = 0 impliesy —y = 0. Butr > 2 so
ly — o'|lo > 0. This is a contradiction, so if < ¢ then the probability thatj — 7')r = 0 is zero.
Henceforth, we assume> c.

When drawingy, first placer — (¢ — 1) coordinates inta: then place the other — 1 values
into v, so thaty = « + v. Condition onu, SOv is a permutation distribution oven — r» + ¢ — 1
coordinates. We know there exists at most orgparse vectow with Aw = —Au. Then,

Pr[3y": A(y — ') = 0and|y'|lo < 1]

Y

m—r+c—1 c c=2
< (m—r-‘,—c—l) <¢c m—r
c—1

where the penultimate inequality follows from considerthg cased|w||o € {¢ — 2,¢ — 1, ¢}
separately. O

We now proceed with the proof of Lemma 5.2.2 .

Proof. W.L.O.G. consider the row case. Lgbe thejth row of z. Note thatﬂjm = 7. Observe that
with probability at least — 1/n° we have||y||o < r for r = clog n. Moreover, the distribution
of y Is permutation-invariant, and the test in&CESTFREQ corresponds to checking whether
(y — ¥')r = 0 for somel-sparsey’ = ae;. Hence, Lemma A.12.1 witthh = /n implies the
probability that any specific test fails is less thaf2c//n)2. Taking a union bound over the
V/nlog n total tests gives a failure probability ¢f> log n(2¢/y/n)*~* < O(1/n(c=2/2), O

A.13 Proof of Lemma5.3.1

Lemma 5.3.1.Consider the recovery of a column/rgwn ROBUSTESTIMATECOL, whereu and
¥ are the results of LDTOBINS on Z. Let y € CV" denote thejth column/row ofz. Sup-
posey is drawn from a permutation invariant distributign=_g"<¢  yresidue 1 ygauss where
M cqupp(yready [Yi| = Ly ||y €|y < €L, andy?** is drawn from the,/n-dimensional normal
distribution N¢ (0, 01 ;) with standard deviation = ¢L/n'/* in each coordinate on both real
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and imaginary axes. We do not require that?, y e andy9e* are independent except for
the permutation invariance of their sum.
Consider the following bad events:

e False negativesupp(y"“*¢) = {i} and ROBUSTESTIMATECOL does not update coordinate
e False positive: RBUSTESTIMATECOL updates some coordinatdut supp(y"e?) # {i}.

> Hyresidue”1+

e Bad updatesupp(y"“4) = {i} and coordinateis estimated by with ’b — gyfead

10{3 logn el.
ogn

For any constant ande below a sufficiently small constant, there exists a distrdmuover sets
T, T' of size O(log n), such that as a distribution ovgrand 7', 7" we have

e The probability of a false negative 13 log® n.
e The probability of a false positive i5/n°.
e The probability of a bad update ig log® n.

Proof. Let j denote the 1-dimensional inverse DFTiofNote that

5,7 = Jr
by definition. Therefore, the goal ofdBUSTESTIMATECOL is simply to perform reliablé-sparse
recovery withO(log n) queries. Fortunately, Algorithm 4.3.2 solved basically #ame problem,
although with more false positives than we want here.
We choos€el” according to the DCATEINNER procedure from Algorithm 4.3.2; the sétis
chosen uniformly at random frofg/n]. We have that

TL](T): Z yiwiﬂ-
i€[v/n]

This is exactly what the procedureadHTOBINS of Algorithm 4.3.2 approximates up to a small
error term. Therefore, the same analysis goes through (lahb) to get that QCATESIGNAL
returns; with 1 — 1/log® n probability if |y;| > ||y_i[|2, where we defing_; := y; mp 13-

DefineA e C!71*v™ to be the rows of the inverse Fourier matrix indexedZbynormalized so
A5 = 1. Thena!” = (Ay),.

First, we prove

||yresidue + ygaussH2 — O(EL) (A8)

with all but n—° probability. We have thal[[|y#**|12] = 262L2, s0 [|y9***|]s < 3eL with all
but e=(V?") < 1/n¢ probability by concentration of chi-square variables. Vi zhave that
HyreszdueH2 S HyrestdueHI S el.
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Next, we show

[ACy™ ™ + yo=*)]la = O(eLy/| T1) (A.9)

with all but n¢ probability. We have thatly*"* is drawn fromNc(0, €L?1,7) by the rotation
invariance of Gaussians, so

| Ayo|l, < 3¢Ly/| | (A.10)

with all bute=¥7) < n=< probability. Furthermore4 has entries of magnitudeso|| Ay ||, <

HyresidueHl\/m: EL\/m

Consider the case whesepp(y"?) = {i}. From Equation (A.8) we have
ly—ill3 < [y + g @e|3 < O(EL%) < L* < |will3 (A.11)
soi is located withl — 1/log® n probability by LOCATESIGNAL.
Next, we note that for any, as a distribution over € [/n],

Ea" — g% = ||yl |2

T

and so (analogously to Lemrma 4.3.6 from Chapter 4 and for grincea = median,c 7 ﬂ]@w”
we have
@ — yil* < 5[ly-ill2 (A.12)

with probability 1 — e=*(I7) = 1 — 1/n° for some constant. Hence if{i} = supp(y”"**®), we
have|a — y;|* < O(€*L?) and thereforéa| > L/2, passing the first check on whethes valid.

For the other check, we have that with- 1/n¢ probability

(Z ‘ﬁ]m —aw™™

TeT

2
)2 = Ay — aei)l:

S ||A(ygauss + yresidue + (yihead o a)ei)HQ
< HA<ygauss + yresidue)H2 + yihead . a‘ \/m
< ’|A<ygauss + yresidue)“Z + ( yiresz‘due + ygauss

< O(eLy/| T)).

where the last step uses Equation (A.9). This gives

12
5[l -

TeT

+ |y — a|)\/| T

= O(L*|T]) < L*|T| /10

so the true coordinatepasses both checks. Hence the probability of a false negatly log® n
as desired.
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Now we bound the probability of a false positive. First colesiwhat happens to any other
coordinatei’ # i Whenlsupp(yhe“d)‘ = {i}. We get some estimaté of its value. Sinced/ /| T'|

satisfies an RIP of order 2 and constaft, by the triangle inequality and Equation (A.9) we have
that with1 — n~¢ probability,

1A(y — d’ex)lla > [ A(y " e; — a’er) |l — [[A(y"™* + y™"")]5

< s - o) — Oy T7)
> L\/F/Q.

Hence the second condition will be violated, anavill not pass. Thus iqsupp(yhmd)‘ = 1, the
probability of a false positive is at most °.

Next, consider what happens to the resudf LOCATESIGNAL When‘supp(yhead)‘ = 0. From
Equation (A.8) and Equation (A.9) we have that with- n~¢ probability:

o — yil* < 5lly-ill3 < O(2L%).
Therefore, from Equation (A.8),
o] <yl +la — | < [ly™ " + 57 |ls + |a — y;| = O(eL) < L/2
so the first check is not passed and not recovered.

Now supposasupp(yneqa)| > 1. Lemma 5.3.2 says that with— n~¢ probability over the
permutation, ndi, a) satisfies

[A(y" " — ae;)|3 < L*| T /5.
But then, from Equation (A.1.0)

|A(y — ae;)|2 > HA( head — ge;) ||l — || Ayo™ ||,

|T|/5— 0O ELF
L\/|T|/10

so no: will pass the second check. Thus, the probability of a fatsstive is1/n°.

Finally, consider the probability of a bad update. We hawat th

h = H;gz%n(Ay)Tw — yzhead + Il}g%_;[l(AyreSidue + Aygauss)Twrz‘
and so
)b yzhead S Hﬂ}g%n(Ayresidue)TwTi + Igg%n(Aygauss)TwTi )
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We have that

mean<Ayreszdue>Tsz
TeT

residue residue
< max |(Ay"™ )| < [y
We know thatd y9**s is N¢ (0, €*L*] /). Hence its mean is a complex Gaussian with standard

deviationeL/,/| T'| in both the real and imaginary axes. This means the probathikt
‘b . y_head

2

> [yl + teL/y/| T

is at most:—2(**), Settingt = +/log log® n gives al/log“ n chance of a bad update, for sufficiently
large|T'| = O(log n). O

A.14 Proof of Lemma5.3.2

Lemma 5.3.2Let y € C™ be drawn from a permutation invariant distribution witt> 2 nonzero
values. Suppose that all the nonzero entrieg b&ve absolute value at lealstChooseT' C [m]
uniformly at random witht := | T'| = O(c?log m).

Then, the probability that there existg/awith ||y||o < 1 and

17 =3 zllz < eL?t/n

is at mostc®(—%-)¢"? wheneverk < 1/8.

m—r

Proof. Let A = \/1/tFry. be/1/t times the submatrix of the Fourier matrix with rows frdf
o)

15 = )7z = 1AGy — y)lI3¢ /.

By a coherence bound (see Secrion 5.3), with1/m¢ probability A satisfies the RIP of order
with constant.5. We would like to bound

P :=Pr[3y : [[A(y — )5 < eL*and|y/[lo < 1]
If r < c¢—1,theny — 4 is c-sparse and

1Ay — )5 > lly — ¥'1I5/2
> (r—1)L%/2
> el?

aslong as < 1/2, giving P = 0. Henceforth, we can assume> ¢. When drawingy, first place
r— (¢ —1) coordinates inta then place the other— 1 values intov, so thaty = « + v. Condition
onu, SOv is a permutation distribution over — r» + ¢ — 1 coordinates. We would like to bound

P =Prf3y : [A(u+v -3 < eL*and]y'[lo < 1]
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Let w be anyc-sparse vector such thgtd(uv + w)||3 < eL? (and note that if no suchy
exists, then since — y' is c-sparse,P = 0). Then recalling that for any norri-||, ||al|* <
2[[6]1* + 2[|a + b]|* and hencéfa + b||* > [[a]|*/2 — [[]*,

JAGu+ v = 9)IE > Ao — ' — w)]3/2 — [ Alu+ w)]3
> o -y + w|3/4 - .

Hence
P<Pr[3y :[v—y + wll3 < 8eL*and|y'[lo < 1].

Furthermore, we know thaty — ' + w||3 > L?(|supp(v) \ supp(w)| — 1). Thus ife < 1/8,

P < Pr[supp(v) \ supp(w)| < 1]
ct+(m—r+c—1)c(c—1)/2

)
()
)072

as desired. ]

<

<
m—r

A.15 Proof of Lemma5.3.4

Lemma 5.3.4Let RoBUST2DSFFT’ be a modified BBUST2DSFFT that avoids false negatives
or bad updates: whenever a false negative or bad update woald, an oracle corrects the al-
gorithm. With large constant probability, dBUusT2DSFFT’ recovers such that there exists a
(k/log® n)-sparse’ satisfying

12— 2 — 2|3 < 60°n.
Furthermore, onlyO(k/log® n) false negatives or bad updates are caught by the oracle.

Proof. One can choose the randam by first selecting the topology of the gragh, and then
selecting the random ordering of the columns and rows of th&ixa Note that reordering the
vertices only affects the ideal ordering by a permutatiothiwieach stage of recovery; the set of
edges recovered at each stage in the ideal ordering depalydsrothe topology ofG. Suppose
that the choice of the topology of the graph satisfies thedlud emme 5.3.3 (which occurs with
large constant probability). We will show that with largenstant probability (over the space of
random permutations of the rows and column)pRsT2DSFFT’ follows the ideal ordering and
the requirements of Lemma 5.3.1 are satisfied at every stage.

For a recovered edge we define the “residuef*, — z,. We will show that ife has rankr,

then|z*, — 2| < r,/loﬁ)l;i"e[/
During attempted recovery at any vertexduring the ideal ordering (including attempts on
vertices which do not have exactly one incident edge)y letCv™ be the associated column/row

of 2—2. We splity into three partg = y"ead yresidue g 9auss \whereyhe*d contains the elements of
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z* notinsupp(2), y"**"%“ containsc* — 2 over the support of, andy9**s* containsw (all restricted
to the column/row corresponding t9. Let S = supp(y™¥¢) contain the set of edges incident
on v that have been recovered so far. We have by the inductivethggpis that]|ymsi@||, <

S .esrank(e), /%EL. Since the algorithm verifies that, . s rank(e) < loglog n, we have

, log”1
Hyreszdueul S 0og Ogn€L< el.
log n

Furthermorey is permutation invariant: if we condition on the values amednpute the rows
and columns of the matrix, the algorithm will consider therpetedy in the same stage of the
algorithm.

Therefore, the conditions for Lemrna 5.3.1 hold. This mehasthe chance of a false positive
is 1/n°, so by a union bound, this never occurs. Because false negat@ver occur by assump-
tion, this means we continue following the ideal orderingc&8ese bad updates never occur, new
residuals have magnitude at most

restdue 1Og 1Og n
ly dm+ﬂj——%L
ogn

Because|y ||,/ (./%EL) < Y .csranke) = rank(v) = rank(e) — 1, each new residual

has magnitude at most
log1
rank(e),/ 08081 1, < el. (A.13)
log n

as needed to complete the induction.

Given that we follow the ideal ordering, we recover every eedd rank at mostog log n.
Furthermore, the residue on every edge we recover is at mho8y Lemma 5.3.3, there are at
mostk/log® n edges that we do not recover. From Equation (A.13), the sguarnorm of the
residues is at most L*k = €2 C?c*n/k - k < o*n for e small enough. Sincéw||3 < 2¢6%n with
overwhelming probability, there existszaso that

Iz -2 =23 < 2|z — 2% = 2’13 + 2||w|l; < 60”n.

Finally, we need to bound the number of times the oracle eattdise negatives or bad updates.
The algorithm applies Lemma 5.3.1 orily/n + O(k) = O(k) times. Each time has & log® n
chance of a false negatives or bad update. Hence the expaateger of false negatives or bad
updates i0(k/ log® n). O
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Appendix B

The Optimality of the Exactly k-Sparse
Algorithm 4.2.1

If we assume that FFT is optimal and hence the DFT cannot b@eted in less thad (n log n)
time, then Algorithm 4.2.1 described in Section 4.2 for tkactly k-sparse case ptimalas long
ask = n*W, Under the In this appendix, we show that by reducirigdimensional DFT to the
an exactc-sparsen-dimensional DFT.

Assume that dividesn.

Lemma B.0.1. Suppose that there is an algorithmthat, given anm-dimensional vectoy such
that 7 is k-sparse, computeg in time 7'(k). Then there is an algorithm!’ that given ak-
dimensional vector computes: in time O(T'(k))).

Proof. Given ak-dimensional vectos,, we definey; = z; moqx, fori = 0...n — 1. WheneverA
requests a samplg, we compute it fromx in constant time. Moreover, we have that= 2; /(. /i)
if ¢ is a multiple of(n/k), andy; = 0 otherwise. Thug is k-sparse. Sincé can be immediately
recovered fronj), the lemma follows. n

Corollary B.0.2. Assume that the-dimensional DFT cannot be computed dfw log n) time.
Then any algorithm for thé-sparse DFT (for vectors of arbitrary dimension) must rufifk log &)
time.
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Appendix C

Lower Bound of the Sparse Fourier
Transform in the General Case

In this appendix, we show any algorithm satisfying Equa(#t) must acces3(k log(n/k)/ loglog n)
samples oft.
We translate this problem into the language of compressinsisg:

Theorem C.0.3.Let F' € C™*" be orthonormal and satisfy; ;| = 1/+/n for all 4, j. Suppose an
algorithm takesn adaptive samples dfz and computes’ with

|z —2||]a <2 min ||z — 2%

k-sparsez*
for any z, with probability at leasB8/4. Then it must have: = Q(k log(n/k)/loglog n).

Corollary C.0.4. Any algorithm computing the approximate Fourier transformst acces®(k log(n/k)/ log log
samples from the time domain.

If the samples were chosen non-adaptively, we would imnteldihavern = Q(klog(n/k))
by [146]. However, an algorithm could choose samples basdkdeovalues of previous samples. In
the sparse recovery framework allowing general linear oressents, this adaptivity can decrease
the number of measurements@k log log(n/k)) [8€]; in this section, we show that adaptivity is
much less effective in our setting where adaptivity onlpwB the choice of Fourier coefficients.

We follow the framework of Section 4 of [146]. In this sectiame use standard notation from
information theory, including (z; y) for mutual information A (z) for discrete entropy, ankbl(z)
for continuous entropy. Consult a reference such &s [36]dtails.

Let F C {S C [n]: |S| = k} be a family ofk-sparse supports such that:

o |S® S| >kforS # 5" e F,whered denotes the exclusive difference between two sets, and
o log |F| = Q(klog(n/k)).

This is possible; for example, a random cod€epk]* with relative distance /2 has these prop-
erties.
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For eachS € F,let X° = {z € {0,+1}" | supp(z®) = S}. Letz € X*° uniformly at
random. The variables, i € S, are i.i.d. subgaussian random variables with parameter 1,
so for any rowF; of F', F;z is subgaussian with parameter= k/n. Therefore

—t2/2
z5}1&;[|ij| > t\/k/n] < 2e¢7 "/

hence for eacly, we can choose an® € X*° with

72 < O SET) CED

Let X = {z% | S € F} be the set of such®.
Letw ~ N(0,a%1,) be i.i.d. normal with variancek/n in each coordinate.
Consider the following process:

Procedure. First, Alice choosesS € F uniformly at random, then selects the € X with
supp(z) = S. Alice independently chooses ~ N(0,a%1,) for a parametetry = O(1) suffi-
ciently small. Forj € [m], Bob chooses; € [n] and observeg; = F; (z + w). He then computes
the resultz’ ~ 2 of sparse recovery, rounds 6 by # = argmin,..y||z* — 2’|, and sets
S" = supp(%). This gives a Markov chai§ — = — y — 2’ — & — 5.

We will show that deterministic sparse recovery algorithetpuire largen to succeed on this
input distributionz + w with 3 /4 probability. By Yao’s minimax principle, this means randaed
sparse recovery algorithms also require large succeed witl3 /4 probability.

Our strategy is to give upper and lower bound<s/¢§; S’), the mutual information betweeh

ands’.

Lemma C.0.5(Analog of Lemma 4.3 of [146] for = O(1)). There exists a constant > 0 such
that if « < o/, then(S;S") = Q(klog(n/k)) .

Proof. Assuming the sparse recovery succeeds (as happens withovdhity), we have|z’ —
(z + w)l|2 < 2||w||2, which implies||z’ — z||» < 3||w]|2. Therefore

12 — zll2 < 112 = 'll2 + [|2" — 2]

<2||z" — z|»

< 6[Jw|2.
We also know|z'—z" ||, > +/k for all distinctz’, 2 € X by construction. Becaud®||w||2] = ok,
with probability at leasB/4 we have|w||, < v4ak < vk /6 for sufficiently smalle. But then
|7 — z|]2 < Vk, S0% = 2 andS = §'. ThusPr[S # 8] < 1/2.

Fano’s inequality state (S | S') < 1+ Pr[S # S’|log | F|. Thus
1
I(8;8)=H(S)—H(S|S)>-1+ 5log\]-“| = Q(klog(n/k))
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as desired. O

We next show an analog of their upper bound (Lemma 4.1 of 146} (.S; S’) for adaptive
measurements of boundéd norm. The proof follows the lines of [146], but is more catefloout
dependencies and needs thebound onF'z.

Lemma C.0.6. .
I(S;8") < O(mlog(1 + - log n)).

Proof. Let A; = F; for j € [m], and letw; = A;w. The w, are independent normal variables
with variancea:. Because thel; are orthonormal ana is drawn from a rotationally invariant
distribution, thew’ are also independent of

Lety; = Ajz + wj. We knowI(S; ") < I(z;y) becauseés — =z — y — S’ is a Markov
chain. Because the variablds are deterministic givem, ..., y;_1,

Iy |y, y—1) = I Ajr +wj | yr, 0, y5-1)

(Ajl’ + wj' | Y1y-- -, yj—l) — h(AJSI? + wj’ ’ T, Y1,.-., yj—l)

h

By the chain rule for information,

IN

1(8;8") < I(x;y)

Z[(:Euyj ‘ yla"'ayjfl)

—

Z h(Ajz + w; Y1y Y1) — h(w]()

<

<> A4y + wf) = ().

<
Il
—_

Thus it suffices to show(4; 2 + w)) — h(w]) = O(log(1 + Xlogn)) for all 5.
Note thatA; depends only om, ..., y;_1, SO it is independent af;;. Thus

k1 k
ogn)+a7
n

by Equation (C.1). Because the maximum entropy distributiaen ary, constraint is a Gaussian,
we have

E[(4jz + w))’] = E[(4;2)*] + E[(w))*] < O(

h(Ae +wl) — h(u!) < (N (0, 0(P1B™) af;)) — h(N(0, af;))
= ;1og(1 + Ologn) n))
= O(log(1 + ;log n)).
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as desired.

Theorem C.0.3 follows from Lemma C.0.5 and Lemma C.0.6, with ©(1).
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Appendix D

Efficient Constructions of Window
Functions

In this appendix, we show how to efficiently implement our flamdow functions which we use
in Chapters 3 and 4.

Claim D.0.7. Letcdf denote the standard Gaussian cumulative distributiontfonc Then:
1. cdf(t) =1 — cdf (—t).
Ccdf(t) < e P2 fort < 0,

2
3. cdf(t) < dfort < —/2log(1/0).

4, [t cdf(x)ds < o fort < —/2log(3/0).
5

. For anys, there exists a functionlfs(t) computable irD(log(1/4)) time such thajcdf —cdf; || <

Proof.

1. Follows from the symmetry of Gaussian distribution.

2. Follows from standard moment generating function boun@Gaussian random variables.

3. Follows from (2).

4. Property (2) implies thatdf(¢) is at mosty/2r < 3 times larger than the Gaussian pdf. Then
apply (3).

5. By (1) and (3)cdf(¢) can be computed asd or 1 + ¢ unless|t| < 1/2(log(1/)). But then
an efficient expansion arourtdonly requiresO(log(1/6)) terms to achieve precisioftd. For
example, we can truncate the representation [117]

1 6—t2/2 t3 t5 t7
df(t) = = =
cdi(?) 2+\/27r<+3+3~5+3~5~7+ )

at O(log(1/4)) terms.

217



Claim D.0.8. Define the continuous Fourier transform fift) by

Jis) = [ ety (o

For t € [n], define
gt:ﬁ.z f(t+nj)

and

d= 3 Ft/nt).

j=—o0

Theng = ¢/, whereg is then-dimensional DFT of).

Proof. Let A,(t) denote the Dirac comb of peridd A,(¢) is a Dirac delta function whetis an
integer and zero elsewhere. Than = A;. For anyt € [n], we have

= Z i f(S + nj)e—Qwits/n

s=1j=—00

3 X flo e

o~

o0

Z f(s)e—%rits/n

_ [ F(s)Aq(s)e2mits/n s

—00

O

Lemma D.0.9. For any parameterd; > 1,4 > 0, anda > 0, there exist flat window functions
and G’ such thatG' can be computed i® (£ log(n/§)) time, and for eachi G’; can be evaluated
in O(log(n/d)) time.

Proof. We will show this for a function’ that is a Gaussian convolved with a box-car filter. First
we construct analogous window functions for the continuémgrier transform. We then show that
discretizing these functions gives the desired result.
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_ Let D be the pdf of a Gaussian with standard deviation- 1 to be determined later, so
D is the pdf of a Gaussian with standard deviatigio. Let /' be a box-car filter of lengtR C
for some paramete€’ < 1; that is, letF'(¢t) = 1 for |t < C and F(¢) = 0 otherwise, so

[ —

F(t)=2Csindt/(2C)).LetG* =D - F,so0G* = D x F.

Then|G*(t)| < 2C |D(t)| < 2C¢ for |t| > o4/21og(1/d). FurthermoreG* is computable in
O(1) time.

Its Fourier transform i7*(t) = cdf(o(t 4+ C)) — cdf(o(t — C)). By Claim D.0.7 we have

for |t| > C 4 \/2log(1/8) /o that G*(t) = +6. We also have, foft| < C' — /2log(1/6)/o, that
G*(t) = 1+ 2.

Now, fori € [n]let H; = /n >3° , G*(i+nj). By Claim D.0.8 ithas DFT; = 33°  G*(i/n+
7). Furthermore,

Y. lG@l=4c >0 D)
[i|>0+/21og(1/9) i<—o+/2log(1/9)

<4c (/; VR b @) di + D(—m/2log(1/5)))
< 4C(cdf(—y/21og(1/d)) + D(—0/210g(1/9)))

< 809 < 8.

Thus if we let
Gi=vn >  G(j)
lil<o+/2log(1/8)
j=i (mod n)
for |i| < oy/2log(1/6) and G; = 0 otherwise, thell G — H||; < 85\/n.

Now, note that for integer with |i| < n/2,

H, — G*(i/n) =Y G*(i/n+)
JEZ
Jj#0

H, - G*(i/n)| < zié\*(—lﬂ —J)

<23 edi(o(~1/2— j + C))

=0
—1/2
< 2/ cdf(o(z + C))dz + 2 cdf(a(—1/2 + C))
< 25/0 426 < 40
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by Claim D.0.7, as long as

o(1/2 = C) > /2log(3/0). (D.1)

Let

) 1 i < n(C — \/210g(1/3) o)
G = 0 li] > n(C ++/2log(1/)/0)

cdfs(o(i+ C)/n) — cdfs(o(i — C)/n) otherwise

vlheregd:f(;(t) computescdf(t) to precision+d in O(log(1/0)) time, as per Claim D.0.7. Then
G'; = G*(i/n) £ 25 = H; = 64. Hence
|G = Gl <167 = Hlloo + |G~ H]l
<G = Hlloo + |G — Hl2
=G" = Hoo + |G — H|2
<G = Hlloo + |G — Hlx
< (8y/n + 6)d.

[e7

have the required properties of flat window functions:
o |G;| =0for|i| > Q(L1log(n/s))
G'; = 1for|i| < (1 —a)n/(2B)
G'; = 0for |i| > n/(2B)
G'; € 10,1] for all i.
|G" — Glo < 6.
We can computé over its entire support i) (2 log(n/d)) total time.

For anyi, G’; can be computed i@ (log(n/4)) time for |i| € [(1 — a)n/(2B),n/(2B)] and
O(1) time otherwise.

Replacings by 6 /n and plugging inr = 42, /21og(n/6) > 1andC = (1 — a/2)/(2B) < 1, we

The only requirement was Equation (1D.1), which is that

1B fatog(njo)(1/2 - 2002 | log(3n o).

This holds if B > 2. The B = 1 case is trivial using the constant functi6f; = 1. ]
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Appendix E

Sample Lower Bound for The Bernoulli
Distribution

We will show that the lower bound 6t (% log (n/k)) on ¢y /{5 recovery from [146] applies to our
Bernoulli distribution from Section 5.1.4. First, we stéteit bound:

Lemma E.0.10([146] section 4) For anyk < n/log n and constant > 0, there exists a distribu-
tion Dy, overk-sparse vectorsif0, 1, —1}™ such that, for every distribution of matricelse R™*"
with m = o(klog(n/k)) and recovery algorithms,

Pr]| A(A(z + w)) — z|2 < VE/5] < 1/2
as a distribution over: ~ Dy andw ~ N(0,021,) with 0® = €k /n, as well as oved and A.

First, we note that we can replaég with U, the uniform distribution ovek-sparse vectors
in {0,1,—1}" in Lemma E.0.10. To see this, suppose we have And) that works with1/2
probability overUy,. Then for anyk-sparser € {0,1,—1}", if we choose a random permutation
matrix P and sign flip matrixS, PSz ~ U,. Hence, the distribution of matricesP.S and algorithm
A'(z) = A((PS)~'z) works with 1/2 probability for anyz, and therefore on average ovgy.
This implies thatd hasQ(klog(n/k)) rows by Lemma E.0.1.0. Hence, we can ggt= U in
Lemma E.O.10.

Our algorithm works witt8 /4 probability over vectors that are not necessarilysparse, but
have a binomial numbeB(n, k/n) of nonzeros. That is, it works over the distributiéhthat is
Up : k' ~ B(n,k/n). With 1 — e=%®*) > 3/4 probability, &’ € [k/2,2k]. Hence, our algorithm
works with at least /2 probability over( Uy, : k' ~ B(n,k/n) N k" € [k/2,2k]). By an averaging
argument, there must exiskac [k/2, 2k] where our algorithm works with at leakt2 probability
over Uy ; but the lemma implies that it must therefore taR&:"log(n/k')) = Q(klog(n/k))
samples.
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Appendix F

Analysis of QuickSync System

F.1 Analysis of the baseline algorithm

The baseline algorithm computes = c¢*) - x for all shiftsk = 0...n — 1. The probability that
the algorithm reports an incorrect output is equal to

P(o) = Pr[a; < max ak]

To estimate the probability of success as a function,ofie derive the distribution of the coordi-
natesa;. From our assumptions we have that= c® - (¢ + g) = v, + w, wherey, = ¢*) . c(®
andu, = c® . g. Note thaty, has normal distribution with zero mean and variance

n—1
Var(u,] = Var]) ¢ g;] = nvar[cMVar]g] = no
i=0

Regardingu;, we have the following two cases:

e If k =t,i.e., for the correct value of the shift, we haye= c¥ - ¢(t) = .
o If £ #£ t,i.e., for an incorrect value of the shift the expectatiomois 0.

We need to bound® (o) = Pr[n + u; < maxy, vy + w). The following theorem establishes
the sufficient (and as we show later, necessary) conditiothiobaseline algorithm to be correct
with probabilityl — o(1), i.e., P(¢) — 0 asn — oc.

Lemma F.1.1. Assume that < ¢(n)n/Inn for ¢(n) = o(1). ThenP(c) = o(1).
Proof. We will bound the probabilities of the following events;: 3., u, > n/3; Ey: uy < —n/3
; Es: 3,2, > n/3. 1f none of the events hold then the algorithm output is axrré/e will show

thatPr[E;] + Pr[E,] + Pr[Es] = o(1).
To analyzeF; and E; recall the following fact:
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Fact F.1.2.Let®(s) be the c.d.f. of the normal distribution with zero mean and waiiance. Then
fors >0
1—®(s) < e /%5

We can now bound
n/3

Pr(£y] < nPrluy > n/3] = n(1 - q)(var[u]

wherek is any index distinct front. Since Vafu,] = no < ¢(n)n?/Inn, we have

In(n)

Pr[E] < n(l — ®(y/Inn/(9c(n)))) < ™. e B = o(1)

The probabilityPr[E»] can be bounded in the same way.
To boundPr|E3], assume without loss of generality that 0. In this case

Vg = c™.c
(ckeo+ cpyr1c1+ ..o+ cn1Cn—p—1) + (coCp—g + .. + Ch—1Cn_1)

= Sk—l-S/é

The terms in the sund), + S, are in generahot independent. In particular, # = n/2, then
Sk = S;.. However, we observe the following.

Claim F.1.3. Each ofS), and S, is a sum of independent random variables taking valuds-n 1}
with probability 1/2.

The claim enables us to bound each sum separately. We witidoBu[S;, > n/6] first. If
k < n/6 then the probability is zero. Otherwise, by applying the @bérbound we have
PT[SIQ > n/6] < o—(n/6)%/(2k) < o~/ 72

The probabilityPr[S, > n/6] can be bounded in the same way. HelugF;] < ne "7 =
o(1). O

Theorem 8.4.1 follows from Lemma F.1.1.

F.2 Tightness of the variance bound

In this section we show that the assumption on the noisenagiased in Theorem 8.4.1 is asymp-
totically tight. Specifically, we show that i > cn/Inn for some large enough constant> 0,
then there with probability — o(1) the output of the baseline algorithm is incorrect. This will
prove Theorem 8.4.2.

Recalling the notation in Section I~.1, we haye= n + u;, ax = v, + u for k£ # t. We need
to show thatP (o) = Pr[a; < max;, a;] approaches for ¢ large enough. To this end, we first
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observe that (iy, > —n holds always and (iiPr[u; > n] = o(1) sincew, is a normal variable
with varianceno = O(n?/1Inn), so the desired bound holds e.g., by Chebyshev inequalitycéle
it suffices to show that
Pr[sup ux < 3n] = o(1) (F.1)
k#t

The main difficulty in proving Equation F.1 is the fact thaetrandom variables; arenot
independent. If they were, a simple calculation would shHmat the expected value of the maximum
of n independent normal variables with varianceis at least/no In n = cn, which is larger than
a; = n for a large enougla. This would then ensure that the reported shift is distinminf¢ with
constant probability. Unfortunately, the independenaddbe guaranteed only if the shifted codes
<) were orthogonal, which is not the case.

Instead, our argument utilizes the fact that the shiftedesatf) are "almost" orthogonal.
Specifically, letC = {c®) : k # t}. Since (as shown in the earlier section in the context of
the eventr;) the probability that for any pait # ¢’ € C' we havec - ¢’ < n/3is o(1), it follows
that||c — ¢’||3 > n for all suche, ¢’ € C with probability 1 — o(1).

We can now use a powerful inequality due to Sudakov [143] twsthat the random variables
u, are "almost" independent, and thus the expected value ofélxemm is stillv/no In n. In our
context, the inequality states the following.

Fact F.2.1. There exists a constamrt > 0 such that ifD is the Euclidean distance between the
closest pair of vectors i/, then:

E = E[mgacxc'g] > cDVolnn

SinceD = /n, we obtain that

E > cov/my/en/Inn - Inn = cyn

The lower bound on the expected value of the maximum can lredbeverted into an upper
bound on probability that the maximum is much lower than kpeetation (this follows from
simple but somewhat tedious calculations). This leads takgn F..L and completes the proof of
Theorem 8.4.2.

F.3 Analysis of the QuickSync algorithm

In this section we show that the probability of correctnesstie QuickSync algorithm that aliases
into n/p buckets exhibits a similar behavior to the baseline algorjtalbeit with the bucket vari-
ance larger by a factor ad(p). At the same time, the running time of our algorithm is eqoal t
O(pn+(n/p)log(n/p)). Thisimproves over the baseline algorithm which g% log n) runtime
as long as the termw is smaller thar{n/p) log(n/p).

Recall that the algorithm first computes the aliased spregattidec(p) and signalk(p), de-
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fined as
p—1

p—1
C(p)i - Z Citqn/p andx(]))i = Z Titgn/p
q=0 q=0
fori =0...n/p — 1. The aliased noise vectg(p) is defined in an analogous way.
The application of FFT, coordinate-wise multiplicatiordanverse FFT computes

for all shiftsk = 0...n/p — 1. The algorithm then selectg p), with the largest value. The last
step of the algorithm fails if fot’ = ¢ mod n/p we havea(p), < max;.y a(p);. Let P'(o) be
the probability of this event. We will show that as longsas- o(pn/Inn) we haveP'(c) = o(1).

Lemma F.3.1. Assume that < c(n) - for ¢(n) = o(1), and thatp = o(n'/%). ThenP'(0) =
o(1).

Proof. We start by decomposing each teutp);:

n/p—1 [p—1 ) p—1 ) p—1
a(p)r = Z Z Citqn/p Z Citqn/p T Z Jitqn/p
q=0 q=0

=0 q=0
n/p—1 [p—1 *) p—1 ) n/p—1 [p—1 *) p—1
= Z Z Ci-‘rqn/p Z Ci+qn/p + Z Z Cz’—i—qn/p Z Gitqn/p
1=0 q=0 g=0 1=0 q=0 q=0
= U+ U

Consider the following events:

Ey: vy < n—n/4;
B Elk#/uk > n/4,
Eouy < —n/4;

Es: Elk#/vk > n/4

If none of the events hold, then the algorithm output is adrré/e need to show thadtr[Ey| +
Pr[E;] + Pr[Ey] + Pr[Es] = o(1).

Events B, and B, Let &, = Y270 ¢iign/ps §i = b=t Gitan/p @Ndm = n/p. Observe that
|¢| < p andg,’s are i.i.d. random variables chosen from the normal distron with mean zero
and varianceps. Conditioned on the choice @fs, the random variable, = >7' ¢,,, 8 has
normal distribution with variancgpo, wherepy = 7 (e, )2. We first show thap < 4pm
with very high probability, and then bound the tail of a nolmendom variable with variance
4pm.

The following fact is adapted from [119], Theorem 3.1.

Fact F.3.2.LetR;, i =0...m —1landj = 0...p — 1, be i.i.d. random variable taking values
uniformly at random from{—1,1}. Let T; = 1/\/m Zf;& R;;. There is an absolute constant
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such that
Z T? < 4p] > 1—2¢m/¢

Applying the fact toR;; = cfﬁ)jn/p, we conclude that with probability — o(1) we haveu <
m YTt T? < 4pm = 4n. In that case Var,] < 4npo < Anpe(n) i = 4n%c(n)/In(n). We

then follow the proof of Lemma F.1.1.

Event I, Observe thaty is a sum of termg; = (3} -, cz+/qn/ )2, where eachy; is a square of
a sum ofp independent random variables taking value§-ini, 1} with probability 1/2. It follows
that £[¢;] = p, and thereforé’[v,| = n/p - p = n. To bound the deviation af,, from its meann,
we first compute its variance.

n/p—1

Var[v,] = Var| Z 4]
< n/p- E[qf]

()
- n/p Z Cl+qn/p 4

= /- <(2) S B Py, X EL,))

q#q’ q
= n/p-(6p(p —1)+p) <Tpn

We can now use Chebyshev’s inequality:

Pr[|vy — n| > n/4] < Var[vy]/(n/4)* < Tpn/(n/4)* = o(1)

Event E; It suffices to boundPr[Es]. To this end we boundPr|v, > n/4]. Without loss of
generality we can assumie= 0. Theny, = >, /0 L2 i+, Wherei + £ is taken modulo:/p.

We first observe that in each tertxic;,,, the random variableg; and ¢;,, are independent
(sincek # 0). This impliesE|[¢;¢;4x] = E[¢]E[¢ivx] = 0, and thereford[v;] = 0.

To boundPr|v, > n/4], we compute the fourth moment of (using the second moment does
not give strong enough probability bound). We have

n/p—1
4 A 4
Elvg] = E[( ) &tiwr)]
=0
n/p—1
= Y B8k Ciylipgk - CigCigyk - CiyCiyyh]
11,12,%3,94=0
Observe that the expectation of any term in the above sunctimains an odd power @f is zero.
Hence the only remaining terms have the fokift? ¢2 ¢ 7 |, wherey; ... j; are not necessarily
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distinct. Let/ be a set of such four-tuplés,, 5, 75, 74). We observe that fofj,, ., 73, 1) to belong
in I, at least two disjoint pairs of indices in the sequence + k, s, 7o + k, 43,13 + k, g, 94 + k

must be equal. This means tHat = C(n/p)?* for some constan€. Since|¢;| < p, we have
Elvl] < C(n/p)*p® < Cn?pS. Thus

Cn2p6
(n/4)*
This impliesPr[Es] < nPr[vy, > n/4] < C -4*. pS/n whichiso(1) if p = o(n'/%). O

Prlo, > n/4] < Eloj]/(n/4)" < — O gt/

We now show that if the noise varianees "small" then one can check each shift using few
time domain samples.

Lemma F.3.3. Assume that < c(n)pﬁm. Consider an algorithm that, given a skt of p shifts,
computes
ap, =c®0...T—-1]-x[0... T —1]

for T = n/p, and selects the larges}, overk € K. Then
" _ _
P"(0) = Pr[a; < max ax] = o(1)

Proof. The argument is similar to the proof of Lemma F.1.1. We vatifgr an analog of the event
Ey; the proofs forF, and E; are straightforward syntactic modifications of the origjsx@uments.

First, observe that[0... T—1]-c®[0... T—1] = T.Letu, = c®[0... T—1]-g[0... T~
1]. Consider the event; : Jycxu;, > T /3. We can bound

T/3

Pr[E]] < pPrlu, > T/3] = n(1 — “P(Var[,]
Ug,

Since Vafu}] = To < ¢(n)—2—, we have

p2lnn’

In(n)

PrE{] < p(1 — (\lin/(9c(n)))) < ""e 00 = o(1)

O

Proofs of Theorem 8.4.3 and Theorem 8.4.4 To prove Theorem 8.4.3, recall that given a sig-
nal x consisting ofp blocks, each of length and with noise variance, QuickSync starts by
aliasing thep blocks into one. This creates one block of lengthwith noise variance /p (after
normalization). We then apply Lemmas F.3.1 and I-.3.3.

Theorem 8.4.4 follows from the assumption that c(n). and Lemma F.3 1.
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Appendix G

A 0.75 Million Point Sparse Fourier
Transform Chip

In this appendix, we present the first VLSI implementatiorthef Sparse Fourier Transform al-
gorithm. The chip implements a 746,496-point Sparse Fodiiansform, in 0.6mrh of silicon
area. At 0.66V, it consumes 0.4pJ/sample and has an e#dbtioughput of 36GS/s. The effective
throughput is computed over all frequencies but frequenaigh negligible magnitudes are not
produced. The chip works for signals that occupy up to 0.1%eftransform frequency range
(0.1% sparse). It can be used to detect a signal that is fregdepping in a wideband, to perform
pattern matching against a long code, or to detect a blookatibn with very high frequency res-
olution. For example, it can detect and recover a signaldbetipies 18 MHz randomly scattered
anywhere in an 18 GHz band with a frequency resolutios @4 kHz.

G.1 The Algorithm

We start by describing the Sparse Fourier Transform algorimplemented on this chip. Below
are bucketization, estimation, and collision resolutiechiniques we used for our implementation.

Bucketization: The algorithm starts by mapping the spectrum into buckeltés & done by
sub-sampling the signal and then performing an FFT. Sulpkagin time causes aliasing in
frequency. Since the spectrum is sparsely occupied, magebaiwill be either empty or have a
single active frequency, and only few buckets will have disioh of multiple active frequencies.
Empty buckets are discarded and non-empty buckets aredom@sdes estimation step.

Estimation: This step estimates the value and frequency number (i.atidwcin the spectrum)
of each active frequency. In the absence of a collision, #heevof an active frequency is the value
of its bucket. To find the frequency number, the algorithrmeedp the bucketization on the original
signal after shifting it by 1 sample. A shift in time causedhage change in the frequency domain
of 2rf7T/N, wheref is the frequency number, is the time shift, andV is the Sparse Fourier
Transform size. Thus, the phase change can be used to cothpdtequency number.
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SRAM 1 || SRAM 2 SRAM 3 SRAM 4 SRAM 5 SRAM 6

TN T 8 ST

Memory Interface

Bucketization j E
Reconstruction

1/O interface S
% [ FFT1 2"point J - 1T
= 10 B
Control Registers < [ FFT2 2 -point J Scheduler Update

2 FFT3 2"point |
£ i 1

< >‘ Scan Chain Driver ; .. Collision

[ FFT4 3° -point J Estimation —+ Detection

FFT5 3°-point |
FFT6 3°-point |

2" Bucketization
'S

Figure G-1:A Block Diagram of the 21° x 3%-point Sparse Fourier Transform: The 1/O inter-
face, Bucketization and Reconstruction blocks operate iallghon three different Sparse Fourier
Transform frames. The figure also shows the input sampldseteix FFTSs.

Collision Resolution: The algorithm detects collisions as follows: If a buckettedms a collision
then repeating the bucketization with a time shift causestitket's magnitude to change since
the colliding frequencies rotate by different phases. Intkast, the magnitude does not change if
the bucket has a single active frequency. After detectifigsmmns, the algorithm resolves them by
using bucketization multiple times with co-prime samplmages (FFTs with co-prime sizes). The
use of co-prime sampling rates guarantees that any twodrenes that collide in one bucketization
do not collide in other bucketizations.

G.2 The Architecture

The block diagram of the Sparse Fourier Transform chip isvehio Figure G-1. A 12-bit 746,496-
point 2!° x 35-point) Sparse Fourier Transform is implemented. Two ty@esFTs @'° and3°-
point) are used for bucketization. The input to tH&-point FFT is the signal sub-sampled &,
while the input to thes®-point FFT is the signal sub-sampled ®Y. FFTs of size2!’ and3°® were
chosen since they are co-prime and can be implemented wighlesiow-radix FFTs. Three FFTs
of each size are used with inputs shifted by 0, 1 or 32 time &snps shown in Figure G-1. In
principle, shifts of 0 and 1 are sufficient. However, thedHshift is used to increase the estimation
accuracy. One 1024-word and one 729-word SRAMs are used riee 2H-point and threes®-
point FFTs, respectively. SRAMs are triplicated to enabpefined operation of the I/O interface,
bucketization and reconstruction blocks. Thus, 3 Sparsei€oTransform frames exist in the
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Writing Outputs of Butterfly k-1

Reading Inputs of Butterfly k

Block Floating Point : Real Imag | | Real I Imag
: 'S h
| Current Frame Exponent | E FFﬁ\
: FFT2]
“ o 7Y A V12 . , FFT 1
« - 9 1 - A12 f12
Decision for Tracking |¢ E : |mag[11;9]" E ~
next frame Overflow - ' : E Reg |
H i Real[11:9] '
| i i i
Current Frame Adjustment ! : . ;|_>;| —ee- >>:| : MUX
| — ] P\
feiiiiiiassassssssssssesessssecn E 144 144 i
Twiddle Factor ROM__ |: ; /o \ / ux ;
: : TTTT TTTT . Reg
; : :
5 : |>Rea|1,2,3&4||>|mag 1,2,3&4| E
PR/ITWF | PI/RTWF | E E ”””””””””””””””””””””””” E /’12
: ; Truncate values to 14b | i
........................... . e e A e e Y oy T ey oy Cpu |
T N '/', """""""""""""""""" :
H /12 H . 12 H
0 X )¢ Y i , y X Multiplication Result in !
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Figure G-2:The Micro-Architecture of the 2'°-point FFT’s. Block floating point (BFP) is used

to reduce the bit-width requirement during the computatbrthe FFT, while maintaining the

pipeline.
The micro-architecture of th&'°-point FFT is shown in Figure G-2. Eag’-point FFT uses
one radix-4 butterfly to perform an in-place FFT, which isioized to reduce area and power con-
sumption as follows: First, the FFT block performs read anitevoperations at even and odd clock
cycles, respectively, which enables the use of single [RANs. A single read operation provides
three complex values, one for each radix-4 butterfly. Thepiernmultiplication is computed over
two clock cycles using two multipliers for each butterflyc8ed, a twiddle factor (TWF) control

required resolution at the output.
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Figure G-3:The Micro-Architecture of Collision Detection, Estimation, and Frequency Re-
covery. The complex valuesry, i1), (12, i2) and(rs, i) are the output of Bucketization for time-
shifts 0, 1 and 32 samples. In Frequency Recovery, 3 bits ofagvare used to fix errors due to
concatenatioficy, c;).

unit is shared between the three butterflies. Third, thekdloating point (BFP) technique is used
to minimize the quantization errcr [189]. BFP is implementisthg a single exponent shared be-
tween FFTs, and scaling is done by shifting in case of overfRound-half-away-from-zero is
implemented by initializing the accumulator registerdmidt5LSB and truncating the results. The
3%-point FFTs are similar, but use radix-3 butterflies.

The micro-architecture of estimation and collision detetis shown in Figure G-3. Phase
shift and phase detector units use the CORDIC algorithm. Ttima&son block operates in two
steps. First, time shifts of 1 and 32 samples are used to centipel MSBs and LSBs of the phase
change, respectively. A 3-bit overlap is used to fix errors tluconcatenation. Since the 5 MSBs
of phase change are taken directly from the output of phatsetes, active frequencies have to
be~ 30dB above the quantization noise to be detected corrécthguencies below this level are
considered negligible. The frequency number is estimatad the phase change. This frequency
number may have errors in the LSBs due to quantization nolse s&cond step corrects any such
errors by using the bucket number to recover the LSBs of tlguéecy number. This is possible
because all frequencies in a bucket share the same remdinder= f mod M, wheref is the
frequency number antll is the FFT size), which is also the bucket number. Thus, ifirdgpiency
recovery block associated with thé’-point FFTs, the bucket number gives the 10 LSBs of the
frequency number. However, in the frequency recovery festhpoint FFTs, the LSBs cannot be
directly replaced by the bucket number siide= 3° is not a power of 2. Instead, the remainder of
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Technology 45 nm SOI CMOS
Core Area 0.6 mmx 1.0 mm
SRAM 3x 75 kbits and X 54 kbits
Core Supply Voltage 0.66-1.18V
Clock Frequency 0.5-1.5 GHz
Core Power 14.6-174.8 mW

Table G.1:Sparse Fourier Transform Chip Features

dividing the frequency number 3/ is calculated and subtracted from the frequency number. The
bucket number is then added to the result of the subtradtoaur implementation, calculating
and subtracting the remainder is done indirectly by trungate LSBs of the phase change.

The collision detection block in Figure G-3 compares theigalof the buckets with and with-
out time-shifts. It uses the estimated frequency to rembeephase change in the time-shifted
bucketizations and compares the three complex values ¢atdaillisions. In the case of no colli-
sion, the three values are averaged to reduce noise. THeisegsed to update the output of the
Sparse Fourier Transform in SRAMs.

G.3 The Chip

The testchip is fabricated in IBM’s 45nm SOI technology. .1 shows the features of the
Sparse Fourier Transform chip and Figure G-4 shows the di¢opdf the testchip. The Sparse
Fourier Transform core occupies 0.6mimcluding SRAMs. At 1.18V supply, the chip operates
at a maximum frequency of 1.5 GHz, resulting in an effecttwmtghput of 109 GS/s. At this
frequency, the measured energy efficiency ig.1.@er 746,49-point Fourier transform. Reducing
the clock frequency to 500 MHz enables an energy efficienc298nJ per Fourier transform
at 0.66V supply. Energy and operating frequency for a rarfgeupply voltages are shown in
Figure G-5.

Since no prior ASIC implementations of the Sparse Fourian$form exist, we compare with
recent low power implementations of the traditional F~T,[29%, 182]. The measured energy is
normalized by the Fourier transform size to obtain the gnpey sample (the Sparse Fourier Trans-
form chip, however, outputs only active frequencies). &1Bl2. shows that the implementations
in [2¢9, 155, 182] work for sparse and non-sparse signalsawhé Sparse Fourier Transform chip
works for signal sparsity up to 0.1%. However, for such spaignals, the chip delivers 40x
lower energy per sample for a 36larger FFT size. Finally, the 746,496-point Sparse Fourier
Transform chip runs in 6,8 when operated at 1.5 GHz which corresponds to anr@8luction in
runtime compared to the C++ implementation that takeg:6@h an Intel-Core i7 CPU operating
at 3.4 GHz.
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Figure G-4:Die Photo of the Sparse Fourier Transform Chip

| | [155] | [29] | [182] | ThisChip |
Technology 65 nm 90 nm 65 nm 45 nm
Signal Type | Any Signal| Any Signal| Any Signal Sparse Signal
Size 210 28 27 to 21! 30 x 210
Word Width 16 bits 10 bits 12 bits 12 bits
Area 8.29mnt | 5.1mnt 1.37 mnt 0.6 mnt
Throughput 240 MS/s | 2.4 GS/s | 1.25-20 MS/s| 36.4-109.2 GS/s
Energy/Sample| 17.2 pJ 50 pJ 19.5-50.6 pJ 0.4-1.6 pJ

Table G.2:Comparison of Sparse Fourier Transform Chip with FFT Chips The measured
energy efficiency and performance of the Sparse Fouriersteam chip compared to published

FFTs. For applications with frequency-sparse signalsSiberse Fourier Transform enables43
lower energy per sample.
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